Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
ACS Omega ; 9(26): 28961-28968, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38973874

ABSTRACT

Pentafluoropyridine was used as a molecular building block for the installation of aryl bromides, affording a series of multisubstituted halogenated arenes. This operationally simplistic methodology offers precise regioselectivity, ease of scalability, and high purity. 19F Nuclear magnetic resonance (NMR) served as a key diagnostic tool for structural characterization, given the sensitivity with various aryl bromine substitutions on the fluorinated pyridine ring. Furthermore, molecular modeling simulations offered insight into this new class of halogenated phenylpyridines and their unique electronic and reactive properties. This study also demonstrates examples of efficient chemo-selectivity upon either metal-catalyzed aryl-aryl coupling or nucleophilic aromatic substitution of the aryl bromide or fluorinated pyridine scaffold, respectively. A diverse pool of polyarylene structures with high degree of complexity, functionalized linear polymers, and controlled network architectures were achieved from this simple methodology.

2.
Molecules ; 27(23)2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36500489

ABSTRACT

Improvements to fluoropolymer processing techniques by way of utilizing nanoparticles as drop-in processing aids have pronounced effects on bulk composite properties. In this work, we prepared fluoroalkyl-silanized silica nanoparticles (F-SiNPs, ca. 200 nm) that were solvent-blended with polyvinylenedifluoride (PVDF) in order to prepare composites with varying weight fractions. We demonstrated that the ability to functionalize SiNPs with long fluoroalkylchains that induced co-crystallization with the PVDF matrix, resulting in uniform particle dispersion and improved interlaminate adhesion. This was quantitatively investigated using calorimetry and thermogravimetric analysis, which showed a decrease in the bulk crystallinity of the virgin PVDF from 37% to 10% with minimal 10 wt % F-SiNP loading, rendering a nearly amorphous PVDF. Additional discussions in this work include the effects of various bare and fluoroalkyl-functionalized SiNP loadings on the amorphous and crystalline domains of the PVDF matrix, as well as thermal decomposition.


Subject(s)
Nanoparticles , Silicon Dioxide , Silicon Dioxide/chemistry , Nanoparticles/chemistry , Crystallization , Solvents/chemistry
3.
Polymers (Basel) ; 14(20)2022 Oct 13.
Article in English | MEDLINE | ID: mdl-36297890

ABSTRACT

Polyvinylidene fluoride (PVDF) presents highly useful piezo and pyro electric properties but they are predicated upon the processing methods and the ensuing volume fraction of the ß-phase. Production of PVDF with higher ß-phase content for additive manufacturing (AM) is particularly desirable because it can enable the creation of custom parts with enhanced properties. Necessary steps from compounding to the testing of a 3D printed piezo sensitive sensor are presented in this paper. AM process variables and the influence of zinc oxide (ZnO) nanofiller on crystallinity, viscosity, and electromechanical properties of PVDF, have been explored. Fourier-transform infrared spectroscopy (FTIR) measurements confirm that a high cooling rate (HCR) of 30 °C min-1 promotes the conversion of the α-into the ß-phase, reaching a maximum of 80% conversion with 7.5-12.5% ZnO content. These processing conditions increase the elastic modulus up to 40%, while maintaining the ultimate strength, ≈46 MPa. Furthermore, HCR 10% ZnO-PVDF produces four times higher volts per Newton when compared to low cooling rate, 5 °C min-1, pristine PVDF. A piezoelectric biomedical sensor application has been presented using HCR and ZnO nanofiller. This technique also reduces the need for post-poling which can reduce manufacturing time and cost.

4.
Methods Mol Biol ; 2443: 81-100, 2022.
Article in English | MEDLINE | ID: mdl-35037201

ABSTRACT

In this chapter, we introduce the main components of the Legume Information System ( https://legumeinfo.org ) and several associated resources. Additionally, we provide an example of their use by exploring a biological question: is there a common molecular basis, across legume species, that underlies the photoperiod-mediated transition from vegetative to reproductive development, that is, days to flowering? The Legume Information System (LIS) holds genetic and genomic data for a large number of crop and model legumes and provides a set of online bioinformatic tools designed to help biologists address questions and tasks related to legume biology. Such tasks include identifying the molecular basis of agronomic traits; identifying orthologs/syntelogs for known genes; determining gene expression patterns; accessing genomic datasets; identifying markers for breeding work; and identifying genetic similarities and differences among selected accessions. LIS integrates with other legume-focused informatics resources such as SoyBase ( https://soybase.org ), PeanutBase ( https://peanutbase.org ), and projects of the Legume Federation ( https://legumefederation.org ).


Subject(s)
Fabaceae , Databases, Genetic , Fabaceae/genetics , Genome, Plant , Genomics , Plant Breeding
5.
Nucleic Acids Res ; 49(D1): D1496-D1501, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33264401

ABSTRACT

SoyBase, a USDA genetic and genomics database, holds professionally curated soybean genetic and genomic data, which is integrated and made accessible to researchers and breeders. The site holds several reference genome assemblies, as well as genetic maps, thousands of mapped traits, expression and epigenetic data, pedigree information, and extensive variant and genotyping data sets. SoyBase displays include genetic, genomic, and epigenetic maps of the soybean genome. Gene expression data is presented in the genome viewer as heat maps and pictorial and tabular displays in gene report pages. Millions of sequence variants have been added, representing variations across various collections of cultivars. This variant data is explorable using new interactive tools to visualize the distribution of those variants across the genome, between selected accessions. SoyBase holds several reference-quality soybean genome assemblies, accessible via various query tools and browsers, including a new visualization system for exploring the soybean pan-genome. SoyBase also serves as a nexus of announcements pertinent to the greater soybean research community. The database also includes a soybean-specific anatomic and biochemical trait ontology. The database can be accessed at https://soybase.org.


Subject(s)
Databases, Genetic , Gene Expression Regulation, Plant , Genome, Plant , Genotype , Glycine max/genetics , Plant Proteins/genetics , Chromosome Mapping , Crops, Agricultural , Epigenesis, Genetic , Genetic Association Studies , Internet , Molecular Sequence Annotation , Phylogeny , Plant Breeding/methods , Plant Proteins/metabolism , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Quantitative Trait, Heritable , Reference Standards , Software , Glycine max/classification , Glycine max/metabolism , United States , United States Department of Agriculture
6.
Nat Genet ; 51(5): 877-884, 2019 05.
Article in English | MEDLINE | ID: mdl-31043755

ABSTRACT

Like many other crops, the cultivated peanut (Arachis hypogaea L.) is of hybrid origin and has a polyploid genome that contains essentially complete sets of chromosomes from two ancestral species. Here we report the genome sequence of peanut and show that after its polyploid origin, the genome has evolved through mobile-element activity, deletions and by the flow of genetic information between corresponding ancestral chromosomes (that is, homeologous recombination). Uniformity of patterns of homeologous recombination at the ends of chromosomes favors a single origin for cultivated peanut and its wild counterpart A. monticola. However, through much of the genome, homeologous recombination has created diversity. Using new polyploid hybrids made from the ancestral species, we show how this can generate phenotypic changes such as spontaneous changes in the color of the flowers. We suggest that diversity generated by these genetic mechanisms helped to favor the domestication of the polyploid A. hypogaea over other diploid Arachis species cultivated by humans.


Subject(s)
Arachis/genetics , Arachis/classification , Argentina , Chromosomes, Plant/genetics , Crops, Agricultural/genetics , DNA Methylation , DNA, Plant/genetics , Domestication , Evolution, Molecular , Gene Expression Regulation, Plant , Genetic Variation , Genome, Plant , Hybridization, Genetic , Phenotype , Polyploidy , Recombination, Genetic , Species Specificity , Tetraploidy
7.
PLoS Comput Biol ; 14(12): e1006472, 2018 12.
Article in English | MEDLINE | ID: mdl-30589835

ABSTRACT

As sequencing prices drop, genomic data accumulates-seemingly at a steadily increasing pace. Most genomic data potentially have value beyond the initial purpose-but only if shared with the scientific community. This, of course, is often easier said than done. Some of the challenges in sharing genomic data include data volume (raw file sizes and number of files), complexities, formats, nomenclatures, metadata descriptions, and the choice of a repository. In this paper, we describe 10 quick tips for sharing open genomic data.


Subject(s)
Databases, Genetic/trends , Information Dissemination/methods , Information Storage and Retrieval/methods , Databases, Factual/statistics & numerical data , Databases, Factual/trends , Databases, Genetic/statistics & numerical data , Genomics , Software , User-Computer Interface
8.
J Phys Chem A ; 121(48): 9346-9357, 2017 Dec 07.
Article in English | MEDLINE | ID: mdl-29110488

ABSTRACT

Quantum dots (QDs) have been successfully employed within a vast array of fundamental and applied studies spanning all subdisciplines of chemistry. However, ab initio models of QD behavior are inherently limited by computational cost due to the large number of atoms within QDs of experimentally relevant size. This work builds upon the method of charge equilibration (qEQ) to account for system interactions unique to QDs (QD-qEQ) and demonstrates accuracy through calculated per-QD energies and dipole moments that agree generally with ab initio calculations and experimental observation, respectively. By forgoing electronic structure information, QD-qEQ exhibits a distinct advantage in its exceptionally low computational cost, which affords consideration of over 35,000 unique spherical wurtzite CdSe structures with radii ≤12.5 Å. A comparison of QD-qEQ calculations with experimental data relating to the phenomenon of CdSe magic size crystals (MSCs) affords statistical and structural insight into why MSCs are observed. Consideration of structures ≤12.5 Å reveals QD sizes corresponding with local minima in QD energy, correlating closely with experimentally observed MSCs. The physical origin of observed energy minima is assigned to QD structures with surfaces exhibiting large fractions of highly coordinated atoms, a physical trait postulated to yield fewer reaction sites for stepwise growth, resulting in MSC stability. The low computational cost along with the per-atom and per-structure electrostatic data afforded by QD-qEQ makes this method an enticing approach to address dynamic QD behavior and enables potential applications within a broad range of fields concomitant to those in which QD inclusion has already proven useful.

9.
Sci Rep ; 6: 34908, 2016 10 10.
Article in English | MEDLINE | ID: mdl-27721469

ABSTRACT

For species with potential as new crops, rapid improvement may be facilitated by new genomic methods. Apios (Apios americana Medik.), once a staple food source of Native American Indians, produces protein-rich tubers, tolerates a wide range of soils, and symbiotically fixes nitrogen. We report the first high-quality de novo transcriptome assembly, an expression atlas, and a set of 58,154 SNP and 39,609 gene expression markers (GEMs) for characterization of a breeding collection. Both SNPs and GEMs identify six genotypic clusters in the collection. Transcripts mapped to the Phaseolus vulgaris genome-another phaseoloid legume with the same chromosome number-provide provisional genetic locations for 46,852 SNPs. Linkage disequilibrium decays within 10 kb (based on the provisional genetic locations), consistent with outcrossing reproduction. SNPs and GEMs identify more than 21 marker-trait associations for at least 11 traits. This study demonstrates a holistic approach for mining plant collections to accelerate crop improvement.


Subject(s)
Breeding , Fabaceae/growth & development , Fabaceae/genetics , Genomics , Genotype , Plants, Edible/growth & development , Plants, Edible/genetics , Cluster Analysis , Gene Expression Profiling , Linkage Disequilibrium , Phaseolus/genetics , Polymorphism, Single Nucleotide
10.
Nucleic Acids Res ; 44(D1): D1181-8, 2016 Jan 04.
Article in English | MEDLINE | ID: mdl-26546515

ABSTRACT

Legume Information System (LIS), at http://legumeinfo.org, is a genomic data portal (GDP) for the legume family. LIS provides access to genetic and genomic information for major crop and model legumes. With more than two-dozen domesticated legume species, there are numerous specialists working on particular species, and also numerous GDPs for these species. LIS has been redesigned in the last three years both to better integrate data sets across the crop and model legumes, and to better accommodate specialized GDPs that serve particular legume species. To integrate data sets, LIS provides genome and map viewers, holds synteny mappings among all sequenced legume species and provides a set of gene families to allow traversal among orthologous and paralogous sequences across the legumes. To better accommodate other specialized GDPs, LIS uses open-source GMOD components where possible, and advocates use of common data templates, formats, schemas and interfaces so that data collected by one legume research community are accessible across all legume GDPs, through similar interfaces and using common APIs. This federated model for the legumes is managed as part of the 'Legume Federation' project (accessible via http://legumefederation.org), which can be thought of as an umbrella project encompassing LIS and other legume GDPs.


Subject(s)
Databases, Genetic , Fabaceae/genetics , Fabaceae/classification , Genome, Plant , Genomics , Internet , Multigene Family , Phylogeny , Plant Proteins/chemistry , Plant Proteins/genetics , Protein Structure, Tertiary , Quantitative Trait Loci , Synteny
11.
BMC Genomics ; 15: 950, 2014 Nov 03.
Article in English | MEDLINE | ID: mdl-25362847

ABSTRACT

BACKGROUND: The homeodomain leucine zipper (HD-Zip) transcription factor family is one of the largest plant specific superfamilies, and includes genes with roles in modulation of plant growth and response to environmental stresses. Many HD-Zip genes are characterized in Arabidopsis (Arabidopsis thaliana), and members of the family are being investigated for abiotic stress responses in rice (Oryza sativa), maize (Zea mays), poplar (Populus trichocarpa) and cucumber (Cucmis sativus). Findings in these species suggest HD-Zip genes as high priority candidates for crop improvement. RESULTS: In this study we have identified members of the HD-Zip gene family in soybean cv. 'Williams 82', and characterized their expression under dehydration and salt stress. Homology searches with BLASTP and Hidden Markov Model guided sequence alignments identified 101 HD-Zip genes in the soybean genome. Phylogeny reconstruction coupled with domain and gene structure analyses using soybean, Arabidopsis, rice, grape (Vitis vinifera), and Medicago truncatula homologues enabled placement of these sequences into four previously described subfamilies. Of the 101 HD-Zip genes identified in soybean, 88 exist as whole-genome duplication-derived gene pairs, indicating high retention of these genes following polyploidy in Glycine ~13 Mya. The HD-Zip genes exhibit ubiquitous expression patterns across 24 conditions that include 17 tissues of soybean. An RNA-Seq experiment performed to study differential gene expression at 0, 1, 6 and 12 hr soybean roots under dehydration and salt stress identified 20 differentially expressed (DE) genes. Several of these DE genes are orthologs of genes previously reported to play a role under abiotic stress, implying conservation of HD-Zip gene functions across species. Screening of HD-Zip promoters identified transcription factor binding sites that are overrepresented in the DE genes under both dehydration and salt stress, providing further support for the role of HD-Zip genes in abiotic stress responses. CONCLUSIONS: We provide a thorough description of soybean HD-Zip genes, and identify potential candidates with probable roles in dehydration and salt stress. Expression profiles generated for all soybean genes, under dehydration and salt stress, at four time points, will serve as an important resource for the soybean research community, and will aid in understanding plant responses to abiotic stress.


Subject(s)
Dehydration/genetics , Gene Expression Profiling , Glycine max/genetics , Glycine max/metabolism , Homeodomain Proteins/genetics , Leucine Zippers/genetics , Salt Tolerance/genetics , Transcription Factors/genetics , Binding Sites , Chromosome Mapping , Cluster Analysis , Computational Biology/methods , Conserved Sequence , Gene Dosage , Gene Expression Regulation, Plant , Genome, Plant , Homeodomain Proteins/chemistry , Homeodomain Proteins/classification , Molecular Sequence Annotation , Multigene Family , Nucleotide Motifs , Organ Specificity/genetics , Phylogeny , Promoter Regions, Genetic , Protein Interaction Domains and Motifs , Stress, Physiological , Transcription Factors/chemistry , Transcription Factors/classification
12.
Nat Protoc ; 8(8): 1494-512, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23845962

ABSTRACT

De novo assembly of RNA-seq data enables researchers to study transcriptomes without the need for a genome sequence; this approach can be usefully applied, for instance, in research on 'non-model organisms' of ecological and evolutionary importance, cancer samples or the microbiome. In this protocol we describe the use of the Trinity platform for de novo transcriptome assembly from RNA-seq data in non-model organisms. We also present Trinity-supported companion utilities for downstream applications, including RSEM for transcript abundance estimation, R/Bioconductor packages for identifying differentially expressed transcripts across samples and approaches to identify protein-coding genes. In the procedure, we provide a workflow for genome-independent transcriptome analysis leveraging the Trinity platform. The software, documentation and demonstrations are freely available from http://trinityrnaseq.sourceforge.net. The run time of this protocol is highly dependent on the size and complexity of data to be analyzed. The example data set analyzed in the procedure detailed herein can be processed in less than 5 h.


Subject(s)
Gene Expression Profiling/methods , RNA/chemistry , Software , Transcriptome , Base Sequence , Schizosaccharomyces/genetics , Schizosaccharomyces pombe Proteins/chemistry , Schizosaccharomyces pombe Proteins/genetics , Sequence Analysis, RNA/methods
13.
Mol Plant ; 5(5): 1020-8, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22241453

ABSTRACT

A comprehensive transcriptome assembly for pigeonpea has been developed by analyzing 128.9 million short Illumina GA IIx single end reads, 2.19 million single end FLX/454 reads, and 18 353 Sanger expressed sequenced tags from more than 16 genotypes. The resultant transcriptome assembly, referred to as CcTA v2, comprised 21 434 transcript assembly contigs (TACs) with an N50 of 1510 bp, the largest one being ~8 kb. Of the 21 434 TACs, 16 622 (77.5%) could be mapped on to the soybean genome build 1.0.9 under fairly stringent alignment parameters. Based on knowledge of intron junctions, 10 009 primer pairs were designed from 5033 TACs for amplifying intron spanning regions (ISRs). By using in silico mapping of BAC-end-derived SSR loci of pigeonpea on the soybean genome as a reference, putative mapping positions at the chromosome level were predicted for 6284 ISR markers, covering all 11 pigeonpea chromosomes. A subset of 128 ISR markers were analyzed on a set of eight genotypes. While 116 markers were validated, 70 markers showed one to three alleles, with an average of 0.16 polymorphism information content (PIC) value. In summary, the CcTA v2 transcript assembly and ISR markers will serve as a useful resource to accelerate genetic research and breeding applications in pigeonpea.


Subject(s)
Cajanus/genetics , Sequence Analysis, DNA/methods , Transcriptome , Cajanus/classification , Chromosome Mapping , Fabaceae/classification , Fabaceae/genetics , Genotype , Phylogeny , Polymorphism, Single Nucleotide
14.
Genome ; 54(1): 10-8, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21217801

ABSTRACT

Studies have indicated that exon and intron size and intergenic distance are correlated with gene expression levels and expression breadth. Previous reports on these correlations in plants and animals have been conflicting. In this study, next-generation sequence data, which has been shown to be more sensitive than previous expression profiling technologies, were generated and analyzed from 14 tissues. Our results revealed a novel dichotomy. At the low expression level, an increase in expression breadth correlated with an increase in transcript size because of an increase in the number of exons and introns. No significant changes in intron or exon sizes were noted. Conversely, genes expressed at the intermediate to high expression levels displayed a decrease in transcript size as their expression breadth increased. This was due to smaller exons, with no significant change in the number of exons. Taking advantage of the known gene space of soybean, we evaluated the positioning of genes and found significant clustering of similarly expressed genes. Identifying the correlations between the physical parameters of individual genes could lead to uncovering the role of regulation owing to nucleotide composition, which might have potential impacts in discerning the role of the noncoding regions.


Subject(s)
Exons/genetics , Gene Expression Regulation, Plant , Genes, Plant , Glycine max/genetics , Introns/genetics , Animals , DNA, Intergenic/genetics , Gene Expression Profiling
15.
BMC Plant Biol ; 10: 41, 2010 Mar 03.
Article in English | MEDLINE | ID: mdl-20199683

ABSTRACT

BACKGROUND: The nutritional and economic value of many crops is effectively a function of seed protein and oil content. Insight into the genetic and molecular control mechanisms involved in the deposition of these constituents in the developing seed is needed to guide crop improvement. A quantitative trait locus (QTL) on Linkage Group I (LG I) of soybean (Glycine max (L.) Merrill) has a striking effect on seed protein content. RESULTS: A soybean near-isogenic line (NIL) pair contrasting in seed protein and differing in an introgressed genomic segment containing the LG I protein QTL was used as a resource to demarcate the QTL region and to study variation in transcript abundance in developing seed. The LG I QTL region was delineated to less than 8.4 Mbp of genomic sequence on chromosome 20. Using Affymetrix Soy GeneChip and high-throughput Illumina whole transcriptome sequencing platforms, 13 genes displaying significant seed transcript accumulation differences between NILs were identified that mapped to the 8.4 Mbp LG I protein QTL region. CONCLUSIONS: This study identifies gene candidates at the LG I protein QTL for potential involvement in the regulation of protein content in the soybean seed. The results demonstrate the power of complementary approaches to characterize contrasting NILs and provide genome-wide transcriptome insight towards understanding seed biology and the soybean genome.


Subject(s)
Genomics/methods , Glycine max/genetics , Quantitative Trait Loci , Seed Storage Proteins/genetics , DNA, Plant/genetics , Gene Expression Profiling , Genome, Plant , Oligonucleotide Array Sequence Analysis , Physical Chromosome Mapping , Plant Oils/analysis , Polymorphism, Genetic , Seeds/genetics , Sequence Analysis, DNA
16.
BMC Genomics ; 11: 38, 2010 Jan 15.
Article in English | MEDLINE | ID: mdl-20078886

ABSTRACT

BACKGROUND: The Soybean Consensus Map 4.0 facilitated the anchoring of 95.6% of the soybean whole genome sequence developed by the Joint Genome Institute, Department of Energy, but its marker density was only sufficient to properly orient 66% of the sequence scaffolds. The discovery and genetic mapping of more single nucleotide polymorphism (SNP) markers were needed to anchor and orient the remaining genome sequence. To that end, next generation sequencing and high-throughput genotyping were combined to obtain a much higher resolution genetic map that could be used to anchor and orient most of the remaining sequence and to help validate the integrity of the existing scaffold builds. RESULTS: A total of 7,108 to 25,047 predicted SNPs were discovered using a reduced representation library that was subsequently sequenced by the Illumina sequence-by-synthesis method on the clonal single molecule array platform. Using multiple SNP prediction methods, the validation rate of these SNPs ranged from 79% to 92.5%. A high resolution genetic map using 444 recombinant inbred lines was created with 1,790 SNP markers. Of the 1,790 mapped SNP markers, 1,240 markers had been selectively chosen to target existing unanchored or un-oriented sequence scaffolds, thereby increasing the amount of anchored sequence to 97%. CONCLUSION: We have demonstrated how next generation sequencing was combined with high-throughput SNP detection assays to quickly discover large numbers of SNPs. Those SNPs were then used to create a high resolution genetic map that assisted in the assembly of scaffolds from the 8x whole genome shotgun sequences into pseudomolecules corresponding to chromosomes of the organism.


Subject(s)
DNA, Plant/analysis , Genome, Plant , Glycine max/chemistry , Polymorphism, Single Nucleotide , Sequence Analysis, DNA/methods , Chromosome Mapping , DNA, Plant/genetics , Databases, Nucleic Acid , Glycine max/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...