Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Crystallogr D Biol Crystallogr ; 57(Pt 9): 1209-18, 2001 Sep.
Article in English | MEDLINE | ID: mdl-11526312

ABSTRACT

Enzymes of the glyoxylate-bypass pathway are potential targets for the control of many human diseases caused by such pathogens as Mycobacteria and Leishmania. Isocitrate lyase catalyses the first committed step in this pathway and the structure of this tetrameric enzyme from Escherichia coli has been determined at 2.1 A resolution. E. coli isocitrate lyase, like the enzyme from other prokaryotes, is located in the cytoplasm, whereas in plants, protozoa, algae and fungi this enzyme is found localized in glyoxysomes. Comparison of the structure of the prokaryotic isocitrate lyase with that from the eukaryote Aspergillus nidulans reveals a different domain structure following the deletion of approximately 100 residues from the larger eukaryotic enzyme. Despite this, the active sites of the prokaryotic and eukaryotic enzymes are very closely related, including the apparent disorder of two equivalent segments of the protein that are known to be involved in a conformational change as part of the enzyme's catalytic cycle.


Subject(s)
Escherichia coli/enzymology , Isocitrate Lyase/chemistry , Alanine/genetics , Amino Acid Sequence , Amino Acid Substitution , Aspergillus nidulans/enzymology , Binding Sites , Catalysis , Crystallography, X-Ray , Cysteine/genetics , Isocitrate Lyase/metabolism , Models, Molecular , Molecular Sequence Data , Phosphopyruvate Hydratase/chemistry , Protein Conformation , Protein Folding , Protein Structure, Quaternary , Protein Structure, Tertiary , Sequence Homology, Amino Acid
2.
J Appl Microbiol ; 89(1): 152-7, 2000 Jul.
Article in English | MEDLINE | ID: mdl-10945792

ABSTRACT

By marker exchange mutagenesis, Bacillus megaterium strain UN-1 (Bm-UN1) was used to prepare a mutant strain B. megaterium UN-cat (Bm-UNcat) lacking the penicillin G acylase gene (pac). The pac gene from Bm-UN1 was subcloned into pTF6 and the resultant plasmid, pBA402, was introduced into Bm-UNcat and Bacillus subtilis. Bm-UNcat harbouring pBA402 produced high penicillin G acylase (PAC) activity of 13.7, 19.5 and 20.4 U ml(-1) at 24, 36 and 48 h of culture, respectively. This was two- to fivefold higher than PAC produced by B. subtilis harbouring pBA402 and about 20-fold higher than PAC produced by the parent strain, Bm-UN1.


Subject(s)
Bacillus megaterium/genetics , Gene Expression , Penicillin Amidase/genetics , Amino Acid Sequence , Bacillus megaterium/enzymology , Base Sequence , Cloning, Molecular , Genes, Bacterial , Mutation , Penicillin Amidase/chemistry , Penicillin Amidase/metabolism , Transformation, Bacterial
3.
Structure ; 8(4): 349-62, 2000 Apr 15.
Article in English | MEDLINE | ID: mdl-10801489

ABSTRACT

BACKGROUND: Isocitrate lyase catalyses the first committed step of the carbon-conserving glyoxylate bypass, the Mg(2+)-dependent reversible cleavage of isocitrate into succinate and glyoxylate. This metabolic pathway is an inviting target for the control of a number of diseases, because the enzymes involved in this cycle have been identified in many pathogens including Mycobacterium leprae and Leishmania. RESULTS: As part of a programme of rational drug design the structure of the tetrameric Aspergillus nidulans isocitrate lyase and its complex with glyoxylate and a divalent cation have been solved to 2.8 A resolution using X-ray diffraction. Each subunit comprises two domains, one of which adopts a folding pattern highly reminiscent of the triose phosphate isomerase (TIM) barrel. A 'knot' between subunits observed in the three-dimensional structure, involving residues towards the C terminus, implies that tetramer assembly involves considerable flexibility in this part of the protein. CONCLUSIONS: Difference Fourier analysis together with the pattern of sequence conservation has led to the identification of both the glyoxylate and metal binding sites and implicates the C-terminal end of the TIM barrel as the active site, which is consistent with studies of other enzymes with this fold. Two disordered regions of the polypeptide chain lie close to the active site, one of which includes a critical cysteine residue suggesting that conformational rearrangements are essential for catalysis. Structural similarities between isocitrate lyase and both PEP mutase and enzymes belonging to the enolase superfamily suggest possible relationships in aspects of the mechanism.


Subject(s)
Aspergillus nidulans/enzymology , Isocitrate Lyase/chemistry , Isocitrate Lyase/metabolism , Amino Acid Sequence , Binding Sites , Catalytic Domain , Crystallography, X-Ray , Metals/metabolism , Models, Molecular , Molecular Sequence Data , Phosphotransferases (Phosphomutases)/chemistry , Protein Conformation , Sequence Homology, Amino Acid , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...