Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Sports Sci Med ; 11(2): 245-54, 2012.
Article in English | MEDLINE | ID: mdl-24149197

ABSTRACT

This study examined the effect of run-up velocity on the peak height achieved by the athlete in the pole vault and on the corresponding changes in the athlete's kinematics and energy exchanges. Seventeen jumps by an experienced male pole vaulter were video recorded in the sagittal plane and a wide range of run-up velocities (4.5-8.5 m/s) was obtained by setting the length of the athlete's run-up (2-16 steps). A selection of performance variables, kinematic variables, energy variables, and pole variables were calculated from the digitized video data. We found that the athlete's peak height increased linearly at a rate of 0.54 m per 1 m/s increase in run-up velocity and this increase was achieved through a combination of a greater grip height and a greater push height. At the athlete's competition run-up velocity (8.4 m/s) about one third of the rate of increase in peak height arose from an increase in grip height and about two thirds arose from an increase in push height. Across the range of run-up velocities examined here the athlete always performed the basic actions of running, planting, jumping, and inverting on the pole. However, he made minor systematic changes to his jumping kinematics, vaulting kinematics, and selection of pole characteristics as the run-up velocity increased. The increase in run-up velocity and changes in the athlete's vaulting kinematics resulted in substantial changes to the magnitudes of the energy exchanges during the vault. A faster run-up produced a greater loss of energy during the take-off, but this loss was not sufficient to negate the increase in run-up velocity and the increase in work done by the athlete during the pole support phase. The athlete therefore always had a net energy gain during the vault. However, the magnitude of this gain decreased slightly as run-up velocity increased. Key pointsIn the pole vault the optimum technique is to run-up as fast as possible.The athlete's vault height increases at a rate of about 0.5 m per 1 m/s increase in run-up velocity.The increase in vault height is achieved through a greater grip height and a greater push height. At the athlete's competition run-up velocity about one third of the rate of increase in vault height arises from an increase in grip height and two thirds arises from an increase in push height.The athlete has a net energy gain during the vault. A faster run-up velocity produces a greater loss of energy during the take-off but this loss of energy is not sufficient to negate the increase in run-up velocity and the increase in the work done by the athlete during the pole support phase.

SELECTION OF CITATIONS
SEARCH DETAIL
...