Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Publication year range
1.
Audiol Neurootol ; 12(1): 37-48, 2007.
Article in English | MEDLINE | ID: mdl-17119332

ABSTRACT

HYPOTHESIS: Cochlear fluid pharmacokinetics can be better represented by three-dimensional (3D) finite-element simulations of drug dispersal. BACKGROUND: Local drug deliveries to the round window membrane are increasingly being used to treat inner ear disorders. Crucial to the development of safe therapies is knowledge of drug distribution in the inner ear with different delivery methods. Computer simulations allow application protocols and drug delivery systems to be evaluated, and may permit animal studies to be extrapolated to the larger cochlea of the human. METHODS: A finite-element 3D model of the cochlea was constructed based on geometric dimensions of the guinea pig cochlea. Drug propagation along and between compartments was described by passive diffusion. To demonstrate the potential value of the model, methylprednisolone distribution in the cochlea was calculated for two clinically relevant application protocols using pharmacokinetic parameters derived from a prior one-dimensional (1D) model. In addition, a simplified geometry was used to compare results from 3D with 1D simulations. RESULTS: For the simplified geometry, calculated concentration profiles with distance were in excellent agreement between the 1D and the 3D models. Different drug delivery strategies produce very different concentration time courses, peak concentrations and basal-apical concentration gradients of drug. In addition, 3D computations demonstrate the existence of substantial gradients across the scalae in the basal turn. CONCLUSION: The 3D model clearly shows the presence of drug gradients across the basal scalae of guinea pigs, demonstrating the necessity of a 3D approach to predict drug movements across and between scalae with larger cross-sectional areas, such as the human, with accuracy. This is the first model to incorporate the volume of the spiral ligament and to calculate diffusion through this structure. Further development of the 3D model will have to incorporate a more accurate geometry of the entire inner ear and incorporate more of the specific processes that contribute to drug removal from the inner ear fluids. Appropriate computer models may assist in both drug and drug delivery system design and can thus accelerate the development of a rationale-based local drug delivery to the inner ear and its successful establishment in clinical practice.


Subject(s)
Anti-Inflammatory Agents/pharmacokinetics , Cochlea/metabolism , Ear, Inner/metabolism , Imaging, Three-Dimensional , Methylprednisolone/pharmacokinetics , Animals , Anti-Inflammatory Agents/administration & dosage , Drug Administration Routes , Guinea Pigs , Methylprednisolone/administration & dosage , Models, Animal , Round Window, Ear/metabolism
2.
ALTEX ; 21 Suppl 3: 77-85, 2004.
Article in German | MEDLINE | ID: mdl-15057412

ABSTRACT

The local delivery of drugs to the cochlea is a promising alternative to systemic treatment of inner ear disorders. Whilst new drugs are being developed for this purpose, it is important to determine the time course and total dose required for the various target regions within the inner ear. Due to the small fluid spaces of the inner ear and the resulting experimental and analytical difficulties, many animal studies have only obtained one sample per animal. This results in limited information about drug time courses at specific locations in the inner ear. We show here how computer models considering general pharmacokinetic principles and inner ear geometry are used for application of the 3R-principle in animal research while avoiding experimental sampling artefacts. This can be achieved by: (1) careful planning and interpretation of experiments to study pharmacokinetics in the inner ear, (2) optimising volume sampling techniques, (3) facilitating the use of advantageous, continuous sampling methods like microdialysis and (4) developing a 3D-model that will permit consideration of the complex geometry of the inner ear when transferring results from one species to another.


Subject(s)
Animal Testing Alternatives , Cochlea/metabolism , Computer Simulation , Pharmaceutical Preparations/administration & dosage , Pharmacokinetics , Animals , Drug Administration Routes , Microdialysis , Models, Biological , Round Window, Ear
SELECTION OF CITATIONS
SEARCH DETAIL
...