Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
1.
Neuropathol Appl Neurobiol ; 50(3): e12991, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38867123

ABSTRACT

AIMS: The aggregation and deposition of amyloid-ß (Aß) peptides in the brain is thought to be the initial driver in the pathogenesis of Alzheimer's disease (AD). Aside from full-length Aß peptides starting with an aspartate residue in position 1, both N-terminally truncated and elongated Aß peptides are produced by various proteases from the amyloid precursor protein (APP) and have been detected in brain tissues and body fluids. Recently, we demonstrated that the particularly abundant N-terminally truncated Aß4-x peptides are generated by ADAMTS4, a secreted metalloprotease that is exclusively expressed in the oligodendrocyte cell population. In this study, we investigated whether ADAMTS4 might also be involved in the generation of N-terminally elongated Aß peptides. METHODS: We used cell-free and cell-based assays in combination with matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF) and electrochemiluminescence sandwich immunoassays to identify and quantify N-terminally elongated Aß peptide variants. Antibodies against these Aß variants were characterised by peptide microarrays and employed for the immunohistochemical analyses of human brain samples. RESULTS: In this study, we discovered additional ADAMTS4 cleavage sites in APP. These were located N-terminal to Asp-(1) in the Aß peptide sequence between residues Glu-(-7) and Ile-(-6) as well as Glu-(-4) and Val-(-3), resulting in the release of N-terminally elongated Aß-6-x and Aß-3-x peptides, of which the latter serve as a component in a promising Aß-based plasma biomarker. Aß-6/-3-40 peptides were detected in supernatants of various cell lines and in the cerebrospinal fluid (CSF), and ADAMTS4 enzyme activity promoted the release of Aß-6/-3-x peptides. Furthermore, by immunohistochemistry, a subset of AD cases displayed evidence of extracellular and vascular localization of N-terminally elongated Aß-6/-3-x peptides. DISCUSSION: The current findings implicate ADAMTS4 in both the pathological process of Aß peptide aggregation and in the early detection of amyloid pathology in AD.


Subject(s)
ADAMTS4 Protein , Alzheimer Disease , Amyloid beta-Peptides , Brain , Humans , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , ADAMTS4 Protein/metabolism , Amyloid beta-Peptides/metabolism , Brain/metabolism , Brain/pathology , Aged , Male , Female , Aged, 80 and over
2.
J Alzheimers Dis ; 96(3): 1097-1113, 2023.
Article in English | MEDLINE | ID: mdl-37980670

ABSTRACT

BACKGROUND: Exposure to stress early in life increases the susceptibility to Alzheimer's disease (AD) pathology in aged AD mouse models. So far, the underlying mechanisms have remained elusive. OBJECTIVE: To investigate 1) effects of early life stress (ELS) on early functional signs that precede the advanced neuropathological changes, and 2) correlate synaptosomal protein content with cognition to identify neural correlates of AD. METHODS: APPswe/PS1dE9 mice and littermates were subjected to ELS by housing dams and pups with limited bedding and nesting material from postnatal days 2-9. At 3 months of age, an age where no cognitive loss or amyloid-ß (Aß) pathology is typically reported in this model, we assessed hippocampal Aß pathology, synaptic strength and synapse composition and interneuron populations. Moreover, cognitive flexibility was assessed and correlated with synaptosomal protein content. RESULTS: While ELS did not affect Aß pathology, it increased synaptic strength and decreased the number of calretinin+ interneurons in the hippocampal dentate gyrus. Both genotype and condition further affected the level of postsynaptic glutamatergic protein content. Finally, APP/PS1 mice were significantly impaired in cognitive flexibility at 3 months of age, and ELS exacerbated this impairment, but only at relatively high learning criteria. CONCLUSIONS: ELS reduced cognitive flexibility in young APP/PS1 mice and altered markers for synapse and network function. These findings at an early disease stage provide novel insights in AD etiology and in how ELS could increase AD susceptibility.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Animals , Male , Mice , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Cognitive Dysfunction/pathology , Disease Models, Animal , Interneurons , Mice, Transgenic , Plaque, Amyloid/pathology , Presenilin-1/genetics , Presenilin-1/metabolism , Synapses/metabolism , Stress, Physiological
3.
J Biol Chem ; 299(8): 104997, 2023 08.
Article in English | MEDLINE | ID: mdl-37394008

ABSTRACT

Presenilin-1 (PSEN1) is the catalytic subunit of the intramembrane protease γ-secretase and undergoes endoproteolysis during its maturation. Heterozygous mutations in the PSEN1 gene cause early-onset familial Alzheimer's disease (eFAD) and increase the proportion of longer aggregation-prone amyloid-ß peptides (Aß42 and/or Aß43). Previous studies had suggested that PSEN1 mutants might act in a dominant-negative fashion by functional impediment of wild-type PSEN1, but the exact mechanism by which PSEN1 mutants promote pathogenic Aß production remains controversial. Using dual recombinase-mediated cassette exchange (dRMCE), here we generated a panel of isogenic embryonic and neural stem cell lines with heterozygous, endogenous expression of PSEN1 mutations. When catalytically inactive PSEN1 was expressed alongside the wild-type protein, we found the mutant accumulated as a full-length protein, indicating that endoproteolytic cleavage occurred strictly as an intramolecular event. Heterozygous expression of eFAD-causing PSEN1 mutants increased the Aß42/Aß40 ratio. In contrast, catalytically inactive PSEN1 mutants were still incorporated into the γ-secretase complex but failed to change the Aß42/Aß40 ratio. Finally, interaction and enzyme activity assays demonstrated the binding of mutant PSEN1 to other γ-secretase subunits, but no interaction between mutant and wild-type PSEN1 was observed. These results establish that pathogenic Aß production is an intrinsic property of PSEN1 mutants and strongly argue against a dominant-negative effect in which PSEN1 mutants would compromise the catalytic activity of wild-type PSEN1 through conformational effects.


Subject(s)
Alzheimer Disease , Amyloid Precursor Protein Secretases , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid Precursor Protein Secretases/metabolism , Mutant Proteins/genetics , Mutation , Peptide Fragments/metabolism , Presenilin-1/metabolism , Animals , Mice
4.
J Cell Biochem ; 124(7): 1040-1049, 2023 07.
Article in English | MEDLINE | ID: mdl-37288821

ABSTRACT

The acute ischemic stroke therapy of choice is the application of Alteplase, a drug containing the enzyme tissue-type plasminogen activator (tPa) which rapidly destabilizes blood clots. A central hallmark of stroke pathology is blood-brain barrier (BBB) breakdown associated with tight junction (TJ) protein degradation, which seems to be significantly more severe under therapeutic conditions. The exact mechanisms how tPa facilitates BBB breakdown are not entirely understood. There is evidence that an interaction with the lipoprotein receptor-related protein 1 (LRP1), allowing tPa transport across the BBB into the central nervous system, is necessary for this therapeutic side effect. Whether tPa-mediated disruption of BBB integrity is initiated directly on microvascular endothelial cells or other brain cell types is still elusive. In this study we could not observe any changes of barrier properties in microvascular endothelial cells after tPa incubation. However, we present evidence that tPa causes changes in microglial activation and BBB breakdown after LRP1-mediated transport across the BBB. Using a monoclonal antibody targeting the tPa binding sites of LRP1 decreased tPa transport across an endothelial barrier. Our results indicate that limiting tPa transport from the vascular system into the brain by coapplication of a LRP1-blocking monoclonal antibody might be a novel approach to minimize tPa-related BBB damage during acute stroke therapy.


Subject(s)
Ischemic Stroke , Stroke , Humans , Tissue Plasminogen Activator/adverse effects , Tissue Plasminogen Activator/metabolism , Endothelial Cells/metabolism , Ischemic Stroke/chemically induced , Ischemic Stroke/complications , Ischemic Stroke/drug therapy , Low Density Lipoprotein Receptor-Related Protein-1/metabolism , Low Density Lipoprotein Receptor-Related Protein-1/therapeutic use , Stroke/drug therapy , Stroke/pathology , Antibodies, Monoclonal/therapeutic use , Lipoproteins, LDL
5.
Life (Basel) ; 13(4)2023 Apr 20.
Article in English | MEDLINE | ID: mdl-37109582

ABSTRACT

Senile plaques consisting of amyloid-beta (Aß) peptides are a major pathological hallmark of Alzheimer's disease (AD). Aß peptides are heterogeneous regarding the exact length of their amino- and carboxy-termini. Aß1-40 and Aß1-42 are often considered to represent canonical "full-length" Aß species. Using immunohistochemistry, we analyzed the distribution of Aß1-x, Aßx-42 and Aß4-x species in amyloid deposits in the subiculum, hippocampus and cortex in 5XFAD mice during aging. Overall plaque load increased in all three brain regions, with the subiculum being the area with the strongest relative plaque coverage. In the subiculum, but not in the other brain regions, the Aß1-x load peaked at an age of five months and decreased thereafter. In contrast, the density of plaques positive for N-terminally truncated Aß4-x species increased continuously over time. We hypothesize that ongoing plaque remodeling takes place, leading to a conversion of deposited Aß1-x peptides into Aß4-x peptides in brain regions with a high Aß plaque burden.

6.
Cell Mol Life Sci ; 79(3): 168, 2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35235058

ABSTRACT

ß-Site amyloid precursor protein (APP) cleaving enzyme-1 (BACE1) is the major described ß-secretase to generate Aß peptides in Alzheimer's disease (AD). However, all therapeutic attempts to block BACE1 activity and to improve AD symptoms have so far failed. A potential candidate for alternative Aß peptides generation is the metalloproteinase meprin ß, which cleaves APP predominantly at alanine in p2 and in this study we can detect an increased meprin ß expression in AD brain. Here, we report the generation of the transgenic APP/lon mouse model of AD lacking the functional Mep1b gene (APP/lon × Mep1b-/-). We examined levels of canonical and truncated Aß species using urea-SDS-PAGE, ELISA and immunohistochemistry in brains of APP/lon mouse × Mep1b-/-. Additionally, we investigated the cognitive abilities of these mice during the Morris water maze task. Aß1-40 and 1-42 levels are reduced in APP/lon mice when meprin ß is absent. Immunohistochemical staining of mouse brain sections revealed that N-terminally truncated Aß2-x peptide deposition is decreased in APP/lon × Mep1b-/- mice. Importantly, loss of meprin ß improved cognitive abilities and rescued learning behavior impairments in APP/lon mice. These observations indicate an important role of meprin ß within the amyloidogenic pathway and Aß production in vivo.


Subject(s)
Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Brain/metabolism , Learning , Memory Disorders/pathology , Metalloendopeptidases/deficiency , Aged , Amyloid Precursor Protein Secretases/metabolism , Animals , Astrocytes/metabolism , Brain/pathology , Crosses, Genetic , Disease Models, Animal , Female , Glial Fibrillary Acidic Protein/metabolism , Humans , Male , Metalloendopeptidases/metabolism , Mice, Knockout , Peptides/metabolism , Protein Processing, Post-Translational
7.
Cell Mol Life Sci ; 79(4): 212, 2022 Mar 27.
Article in English | MEDLINE | ID: mdl-35344086

ABSTRACT

Despite the neurodegenerative disorder Alzheimer's disease (AD) is the most common form of dementia in late adult life, there is currently no therapy available to prevent the onset or slow down the progression of AD. The progressive cognitive decline in AD correlates with a successive accumulation of cerebral amyloid-ß (Aß) due to impaired clearance mechanisms. A significant percentage is removed by low-density lipoprotein receptor-related protein 1 (LRP1)-mediated transport across the blood-brain barrier (BBB) into the periphery. Circulating proprotein convertase subtilisin/kexin type 9 (PCSK9) binds to members of the low-density lipoprotein receptor protein family at the cell surface and targets them for lysosomal degradation, which reduces the number of functional receptors. However, the adverse impact of PCSK9 on LRP1-mediated brain Aß clearance remains elusive. By using an established BBB model, we identified reduced LRP1-mediated brain-to-blood Aß clearance due to PCSK9 across different endothelial monolayer in vitro. Consequently, the repetitive application of FDA-approved monoclonal anti-PCSK9 antibodies into 5xFAD mice decreased the cerebral Aß burden across variants and aggregation state, which was not reproducible in brain endothelial-specific LRP1-/- 5xFAD mice. The peripheral PCSK9 inhibition reduced Aß pathology in prefrontal cortex and hippocampus-brain areas critically involved in memory processing-and prevented disease-related impairment in hippocampus-dependent memory formation. Our data suggest that peripheral inhibition of PCSK9 by already available therapeutic antibodies may be a novel and easily applicable potential AD treatment.


Subject(s)
Blood-Brain Barrier , Proprotein Convertase 9 , Amyloid beta-Peptides/metabolism , Animals , Biological Transport , Blood-Brain Barrier/metabolism , Humans , Mice , Proprotein Convertase 9/metabolism
8.
Cell Mol Life Sci ; 79(1): 55, 2021 Dec 16.
Article in English | MEDLINE | ID: mdl-34913091

ABSTRACT

Epidemiological studies indicate that the consumption of caffeine, the most commonly ingested psychoactive substance found in coffee, tea or soft drinks, reduces the risk of developing Alzheimer's disease (AD). Previous treatment studies with transgenic AD mouse models reported a reduced amyloid plaque load and an amelioration of behavioral deficits. It has been further shown that moderate doses of caffeine have the potential to attenuate the health burden in preclinical mouse models of a variety of brain disorders (reviewed in Cunha in J Neurochem 139:1019-1055, 2016). In the current study, we assessed whether long-term caffeine consumption affected hippocampal neuron loss and associated behavioral deficits in the Tg4-42 mouse model of AD. Treatment over a 4-month period reduced hippocampal neuron loss, rescued learning and memory deficits, and ameliorated impaired neurogenesis. Neuron-specific RNA sequencing analysis in the hippocampus revealed an altered expression profile distinguished by the up-regulation of genes linked to synaptic function and processes, and to neural progenitor proliferation. Treatment of 5xFAD mice, which develop prominent amyloid pathology, with the same paradigm also rescued behavioral deficits but did not affect extracellular amyloid-ß (Aß) levels or amyloid precursor protein (APP) processing. These findings challenge previous assumptions that caffeine is anti-amyloidogenic and indicate that the promotion of neurogenesis might play a role in its beneficial effects.


Subject(s)
Alzheimer Disease/drug therapy , Caffeine/pharmacology , Neurogenesis/drug effects , Neurons/drug effects , Plaque, Amyloid/drug therapy , Amyloid beta-Peptides/metabolism , Animals , Biomarkers/metabolism , Cells, Cultured , Female , Male , Mice , Mice, Inbred C57BL , Neurons/pathology
9.
Alzheimers Res Ther ; 13(1): 94, 2021 05 04.
Article in English | MEDLINE | ID: mdl-33947460

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative disorder associated with extracellular amyloid-ß peptide deposition and progressive neuron loss. Strong evidence supports that neuroinflammatory changes such as the activation of astrocytes and microglia cells are important in the disease process. Glycoprotein nonmetastatic melanoma protein B (GPNMB) is a transmembrane glycoprotein that has recently been associated with an emerging role in neuroinflammation, which has been reported to be increased in post-mortem brain samples from AD and Parkinson's disease patients. METHODS: The present study describes the partial "fit for purpose" validation of a commercially available immunoassay for the determination of GPNMB levels in the cerebrospinal fluid (CSF). We further assessed the applicability of GPNMB as a potential biomarker for AD in two different cohorts that were defined by biomarker-supported clinical diagnosis or by neuroimaging with amyloid positron emission tomography, respectively. RESULTS: The results indicated that CSF GPNMB levels could not distinguish between AD or controls with other neurological diseases but correlated with other parameters such as aging and CSF pTau levels. CONCLUSIONS: The findings of this study do not support GPNMB in CSF as a valuable neurochemical diagnostic biomarker of AD but warrant further studies employing healthy control individuals.


Subject(s)
Alzheimer Disease , Alzheimer Disease/diagnostic imaging , Amyloid beta-Peptides , Biomarkers , Glycoproteins , Humans , Membrane Glycoproteins , Microglia , Peptide Fragments , tau Proteins
10.
Schizophr Res ; 215: 506-513, 2020 01.
Article in English | MEDLINE | ID: mdl-28433501

ABSTRACT

Disrupted in Schizophrenia 1 (DISC1) is a prominent gene in mental illness research, encoding a scaffold protein known to be of importance in the developing cerebral cortex. Reelin is a critical extracellular protein for development and lamination of the prenatal cortex and which has also been independently implicated in mental illness. Regulation of reelin activity occurs through processing by the metalloproteinases ADAMTS-4 and ADAMTS-5. Through cross-breeding of heterozygous transgenic DISC1 mice with heterozygous reeler mice, which have reduced reelin, pups heterozygous for both phenotypes were generated. From these, we determine that transgenic DISC1 leads to a reduction in the processing of reelin, with implications for its downstream signalling element Dab1. An effect of DISC1 on reelin processing was confirmed in vitro, and revealed that intracellular DISC1 affects ADAMTS-4 protein, which in turn is exported and affects processing of extracellular reelin. In transgenic rat cortical cultures, an effect of DISC1 on reelin processing could also be seen specifically in early, immature neurons, but was lost in calretinin and reelin-positive mature neurons, suggesting cell-type specificity. DISC1 therefore acts upstream of reelin in the perinatal cerebral cortex in a cell type/time specific manner, leading to regulation of its activity through altered proteolytic cleavage. Thus a functional link is demonstrated between two proteins, each of independent importance for both cortical development and associated cognitive functions leading to behavioural maladaptation and mental illness.


Subject(s)
ADAMTS4 Protein/metabolism , Cell Adhesion Molecules, Neuronal/metabolism , Cerebral Cortex/growth & development , Cerebral Cortex/metabolism , Extracellular Matrix Proteins/metabolism , Nerve Tissue Proteins/metabolism , Schizophrenia/metabolism , Serine Endopeptidases/metabolism , Animals , Animals, Newborn , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL , Mice, Neurologic Mutants , Mice, Transgenic , Reelin Protein
11.
JCI Insight ; 4(17)2019 09 05.
Article in English | MEDLINE | ID: mdl-31484831

ABSTRACT

`NK cell-mediated regulation of antigen-specific T cells can contribute to and exacerbate chronic viral infection, but the protective mechanisms against NK cell-mediated attack on T cell immunity are poorly understood. Here, we show that progranulin (PGRN) can reduce NK cell cytotoxicity through reduction of NK cell expansion, granzyme B transcription, and NK cell-mediated lysis of target cells. Following infection with the lymphocytic choriomeningitis virus (LCMV), PGRN levels increased - a phenomenon dependent on the presence of macrophages and type I IFN signaling. Absence of PGRN in mice (Grn-/-) resulted in enhanced NK cell activity, increased NK cell-mediated killing of antiviral T cells, reduced antiviral T cell immunity, and increased viral burden, culminating in increased liver immunopathology. Depletion of NK cells restored antiviral immunity and alleviated pathology during infection in Grn-/- mice. In turn, PGRN treatment improved antiviral T cell immunity. Taken together, we identified PGRN as a critical factor capable of reducing NK cell-mediated attack of antiviral T cells.


Subject(s)
Antiviral Agents/pharmacology , Cytotoxicity, Immunologic/immunology , Killer Cells, Natural/immunology , Progranulins/metabolism , T-Lymphocytes/immunology , Animals , CD8-Positive T-Lymphocytes , Cyclin T , Cyclin-Dependent Kinase 9/metabolism , Cytotoxicity, Immunologic/drug effects , Disease Models, Animal , HEK293 Cells , Humans , Killer Cells, Natural/drug effects , Killer Cells, Natural/metabolism , Liver/immunology , Liver/pathology , Lymphocyte Activation/drug effects , Lymphocytic Choriomeningitis/immunology , Lymphocytic choriomeningitis virus , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Progranulins/genetics , Progranulins/pharmacology , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism , Virus Diseases
12.
Acta Neuropathol ; 137(2): 239-257, 2019 02.
Article in English | MEDLINE | ID: mdl-30426203

ABSTRACT

Brain accumulation and aggregation of amyloid-ß (Aß) peptides is a critical step in the pathogenesis of Alzheimer's disease (AD). Full-length Aß peptides (mainly Aß1-40 and Aß1-42) are produced through sequential proteolytic cleavage of the amyloid precursor protein (APP) by ß- and γ-secretases. However, studies of autopsy brain samples from AD patients have demonstrated that a large fraction of insoluble Aß peptides are truncated at the N-terminus, with Aß4-x peptides being particularly abundant. Aß4-x peptides are highly aggregation prone, but their origin and any proteases involved in their generation are unknown. We have identified a recognition site for the secreted metalloprotease ADAMTS4 (a disintegrin and metalloproteinase with thrombospondin motifs 4) in the Aß peptide sequence, which facilitates Aß4-x peptide generation. Inducible overexpression of ADAMTS4 in HEK293 cells resulted in the secretion of Aß4-40 but unchanged levels of Aß1-x peptides. In the 5xFAD mouse model of amyloidosis, Aß4-x peptides were present not only in amyloid plaque cores and vessel walls, but also in white matter structures co-localized with axonal APP. In the ADAMTS4-/- knockout background, Aß4-40 levels were reduced confirming a pivotal role of ADAMTS4 in vivo. Surprisingly, in the adult murine brain, ADAMTS4 was exclusively expressed in oligodendrocytes. Cultured oligodendrocytes secreted a variety of Aß species, but Aß4-40 peptides were absent in cultures derived from ADAMTS4-/- mice indicating that the enzyme was essential for Aß4-x production in this cell type. These findings establish an enzymatic mechanism for the generation of Aß4-x peptides. They further identify oligodendrocytes as a source of these highly amyloidogenic Aß peptides.


Subject(s)
ADAMTS4 Protein/metabolism , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Oligodendroglia/metabolism , Alzheimer Disease/pathology , Amyloid Precursor Protein Secretases/metabolism , Animals , Brain/metabolism , Brain/pathology , Disease Models, Animal , HEK293 Cells , Humans , Mice , Oligodendroglia/pathology , Peptide Fragments/metabolism , Plaque, Amyloid/pathology
13.
Acta Neuropathol Commun ; 6(1): 108, 2018 10 19.
Article in English | MEDLINE | ID: mdl-30340518

ABSTRACT

Alzheimer's disease (AD) is an irreversible, devastating neurodegenerative brain disorder characterized by the loss of neurons and subsequent cognitive decline. Despite considerable progress in the understanding of the pathophysiology of AD, the precise molecular mechanisms that cause the disease remain elusive. By now, there is ample evidence that activated microglia have a critical role in the initiation and progression of AD. The present study describes the identification of Glycoprotein nonmetastatic melanoma protein B (GPNMB) as a novel AD-related factor in both transgenic mice and sporadic AD patients by expression profiling, immunohistochemistry and ELISA measurements. We show that GPNMB levels increase in an age-dependent manner in transgenic AD models showing profound cerebral neuron loss and demonstrate that GPNMB co-localizes with a distinct population of IBA1-positive microglia cells that cluster around amyloid plaques. Our data further indicate that GPNMB is part of a microglia activation state that is only present under neurodegenerative conditions and that is characterized by the up-regulation of a subset of genes including TREM2, APOE and CST7. In agreement, we provide in vitro evidence that soluble Aß has a direct effect on GPNMB expression in an immortalized microglia cell line. Importantly, we show for the first time that GPNMB is elevated in brain samples and cerebrospinal fluid (CSF) of sporadic AD patients when compared to non-demented controls.The current findings indicate that GPNMB represents a novel disease-associated marker that appears to play a role in the neuroinflammatory response of AD.


Subject(s)
Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Brain/pathology , Membrane Glycoproteins/metabolism , Microglia/metabolism , Up-Regulation/genetics , Age Factors , Aged , Aged, 80 and over , Amyloid beta-Peptides/pharmacology , Amyloid beta-Protein Precursor/genetics , Animals , Cell Line, Transformed , Disease Models, Animal , Female , Glial Fibrillary Acidic Protein/metabolism , Humans , Lipopolysaccharides/pharmacology , Male , Membrane Glycoproteins/genetics , Mice , Mice, Transgenic , Microglia/pathology , Mutation/genetics , Peptide Fragments/pharmacology , Phosphopyruvate Hydratase/metabolism , Presenilin-1/genetics , Presenilin-1/metabolism
14.
Brain Behav Immun ; 73: 21-33, 2018 10.
Article in English | MEDLINE | ID: mdl-30041013

ABSTRACT

The accumulation of neurotoxic amyloid-beta (Aß) in the brain is a characteristic hallmark of Alzheimer's disease (AD). The blood-brain barrier (BBB) provides a large surface area and has been shown to be an important mediator for removal of brain Aß. Both, the ABC transporter P-glycoprotein (ABCB1/P-gp) and the receptor low-density lipoprotein receptor-related protein 1 (LRP1) have been implicated to play crucial roles in Aß efflux from brain. Here, with immunoprecipitation experiments, co-immunostainings and dual inhibition of ABCB1/P-gp and LRP1, we show that both proteins are functionally linked, mediating a concerted transcytosis of Aß through endothelial cells. Late-onset AD risk factor Phosphatidylinositol binding clathrin assembly protein (PICALM) is associated with both ABCB1/P-gp and LRP1 representing a functional link and guiding both proteins through the brain endothelium. Together, our results give more mechanistic insight on Aß transport across the BBB and show that the functional interplay of different clearance proteins is needed for the rapid removal of Aß from the brain.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Monomeric Clathrin Assembly Proteins/physiology , Receptors, LDL/metabolism , Tumor Suppressor Proteins/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 1/physiology , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/physiology , Animals , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/physiology , Brain/metabolism , Disease Models, Animal , Endothelial Cells/metabolism , Endothelial Cells/physiology , Low Density Lipoprotein Receptor-Related Protein-1 , Male , Mice , Mice, Knockout , Monomeric Clathrin Assembly Proteins/metabolism , Peptide Fragments/metabolism , Primary Cell Culture , Receptors, LDL/physiology , Swine , Transcytosis/physiology , Tumor Suppressor Proteins/physiology
15.
Transl Psychiatry ; 8(1): 53, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29491368

ABSTRACT

Exposure to chronic stress or elevated glucocorticoid hormone levels in adult life has been associated with cognitive deficits and an increased risk for Alzheimer's disease (AD). Since exposure to stress during early life enhances stress-responsiveness and lastingly affects cognition in adult life, we here investigated; (i) whether chronic early life stress (ELS) affects AD pathology and cognition in middle-aged APPswe/PS1dE9 mice, and (ii) whether it is still possible to rescue these late effects by briefly blocking glucocorticoid receptors (GRs) at a translationally relevant, middle age. Transgenic APPswe/PS1dE9 mice were subjected to ELS by housing dams and pups with limited nesting and bedding material from postnatal days 2-9 only. In 6- and 12-month-old offspring, this resulted in enhanced hippocampal amyloid-ß (Aß)-40 and -42 levels, and in reduced cognitive flexibility, that correlated well with the Aß42 levels. In parallel, CORT levels and BACE1 levels were significantly elevated. Surprisingly, blocking GRs for only 3 days at 12 months of age reduced CORT levels, reduced hippocampal Aß40 and -42, and ß-site APP-cleaving enzyme 1 (BACE1) levels, and notably rescued the cognitive deficits in 12-month-old APPswe/PS1dE9 mice. These mouse data demonstrate that exposure to stress during the sensitive period early in life influences later amyloid pathology and cognition in genetically predisposed, mutant mice, and as such, may increase AD vulnerability. The fact that a short treatment with a GR antagonist at middle age lastingly reduced Aß levels and rescued the cognitive deficits after ELS, highlights the therapeutic potential of this drug for reducing amyloid pathology.


Subject(s)
Amyloid beta-Peptides , Cognitive Dysfunction , Corticosterone/blood , Hippocampus , Hormone Antagonists/pharmacology , Peptide Fragments , Receptors, Glucocorticoid/antagonists & inhibitors , Stress, Psychological , Age Factors , Amyloid Precursor Protein Secretases , Amyloid beta-Peptides/drug effects , Amyloid beta-Peptides/metabolism , Animals , Aspartic Acid Endopeptidases , Behavior, Animal/drug effects , Behavior, Animal/physiology , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/etiology , Cognitive Dysfunction/physiopathology , Disease Models, Animal , Female , Hippocampus/drug effects , Hippocampus/metabolism , Hormone Antagonists/administration & dosage , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mifepristone/pharmacology , Peptide Fragments/drug effects , Peptide Fragments/metabolism , Stress, Psychological/blood , Stress, Psychological/complications
16.
Bioorg Med Chem Lett ; 28(8): 1417-1422, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29463448

ABSTRACT

Rhomboids are intramembrane serine proteases with diverse physiological functions in organisms ranging from archaea to humans. Crystal structure analysis has provided a detailed understanding of the catalytic mechanism, and rhomboids have been implicated in various disease contexts. Unfortunately, the design of specific rhomboid inhibitors has lagged behind, and previously described small molecule inhibitors displayed insufficient potency and/or selectivity. Using a computer-aided approach, we focused on the discovery of novel scaffolds with reduced liabilities and the possibility for broad structural variations. Docking studies with the E. coli rhomboid GlpG indicated that 2-styryl substituted benzoxazinones might comprise novel rhomboid inhibitors. Protease in vitro assays confirmed activity of 2-styryl substituted benzoxazinones against GlpG but not against the soluble serine protease α-chymotrypsin. Furthermore, mass spectrometry analysis demonstrated covalent modification of the catalytic residue Ser201, corroborating the predicted mechanism of inhibition and the formation of an acyl enzyme intermediate. In conclusion, 2-styryl substituted benzoxazinones are a novel rhomboid inhibitor scaffold with ample opportunity for optimization.


Subject(s)
Benzoxazines/chemistry , Serine Proteinase Inhibitors/chemistry , Styrenes/chemistry , Animals , Benzoxazines/chemical synthesis , Catalytic Domain , Cattle , Chymotrypsin/chemistry , DNA-Binding Proteins/antagonists & inhibitors , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , Drosophila/chemistry , Drosophila Proteins/metabolism , Drug Discovery , Endopeptidases/chemistry , Endopeptidases/genetics , Enzyme Assays , Escherichia coli/enzymology , Escherichia coli Proteins/antagonists & inhibitors , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Humans , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/chemistry , Membrane Proteins/genetics , Molecular Docking Simulation , Mutation , Serine/chemistry , Serine Proteinase Inhibitors/chemical synthesis , Styrenes/chemical synthesis , Transforming Growth Factor alpha/metabolism
17.
Biochemistry ; 56(51): 6713-6725, 2017 12 26.
Article in English | MEDLINE | ID: mdl-29185711

ABSTRACT

Rhomboids are intramembrane serine proteases and belong to the group of structurally and biochemically most comprehensively characterized membrane proteins. They are highly conserved and ubiquitously distributed in all kingdoms of life and function in a wide range of biological processes, including epidermal growth factor signaling, mitochondrial dynamics, and apoptosis. Importantly, rhomboids have been associated with multiple diseases, including Parkinson's disease, type 2 diabetes, and malaria. However, despite a thorough understanding of many structural and functional aspects of rhomboids, potent and selective inhibitors of these intramembrane proteases are still not available. In this study, we describe the computer-based rational design, chemical synthesis, and biological evaluation of novel N-methylene saccharin-based rhomboid protease inhibitors. Saccharin inhibitors displayed inhibitory potency in the submicromolar range, effectiveness against rhomboids both in vitro and in live Escherichia coli cells, and substantially improved selectivity against human serine hydrolases compared to those of previously known rhomboid inhibitors. Consequently, N-methylene saccharins are promising new templates for the development of rhomboid inhibitors, providing novel tools for probing rhomboid functions in physiology and disease.


Subject(s)
Drug Design , Saccharin/analogs & derivatives , Serine Proteases/metabolism , Serine Proteinase Inhibitors/pharmacology , Computer-Aided Design , HEK293 Cells , Humans , Membrane Proteins , Saccharin/pharmacology , Serine Proteinase Inhibitors/chemistry
18.
Alzheimers Res Ther ; 9(1): 80, 2017 Oct 04.
Article in English | MEDLINE | ID: mdl-28978359

ABSTRACT

BACKGROUND: The deposition of neurotoxic amyloid-ß (Aß) peptides in plaques in the brain parenchyma and in cerebral blood vessels is considered to be a key event in Alzheimer's disease (AD) pathogenesis. Although the presence and impact of full-length Aß peptides such as Aß1-40 and Aß1-42 have been analyzed extensively, the deposition of N-terminally truncated Aß peptide species has received much less attention, largely because of the lack of specific antibodies. METHODS: This paper describes the generation and characterization of novel antibodies selective for Aß4-x peptides and provides immunohistochemical evidence of Aß4-x in the human brain and its distribution in the APP/PS1KI and 5XFAD transgenic mouse models. RESULTS: The Aß4-x staining pattern was restricted mainly to amyloid plaque cores and cerebral amyloid angiopathy in AD and Down syndrome cases and in both AD mouse models. In contrast, diffuse amyloid deposits were largely negative for Aß4-x immunoreactivity. No overt intraneuronal staining was observed. CONCLUSIONS: The findings of this study are consistent with previous reports demonstrating a high aggregation propensity of Aß4-x peptides and suggest an important role of these N-truncated Aß species in the process of amyloidogenesis and plaque core formation.


Subject(s)
Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Brain/metabolism , Brain/pathology , Aged , Aged, 80 and over , Amyloid beta-Peptides/immunology , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Antibodies , Cerebral Amyloid Angiopathy/metabolism , Cerebral Amyloid Angiopathy/pathology , Disease Models, Animal , Down Syndrome/metabolism , Down Syndrome/pathology , Enzyme-Linked Immunosorbent Assay , Guinea Pigs , Humans , Immunohistochemistry/methods , Male , Mice, Inbred C57BL , Mice, Transgenic , Plaque, Amyloid/metabolism , Plaque, Amyloid/pathology , Presenilin-1/genetics , Presenilin-1/metabolism
19.
Mol Neurobiol ; 54(8): 6542-6555, 2017 10.
Article in English | MEDLINE | ID: mdl-27734334

ABSTRACT

The environmental enrichment (EE) paradigm is regarded as a useful tool to create a physical and intellectual stimulation for laboratory rodents and has been used in a variety of Alzheimer disease (AD) mouse models. However, the results of these studies have been conflicting as EE had inconsistent effects on memory performance, Aß deposition, inflammatory status and other pathological outcomes depending on the AD model. Here, we studied the influence of a lifelong EE on the widely used 5XFAD mouse model, representing the main pathological features of AD. Although 11 months of enriched housing led to an improved survival rate and a partial rescue of motor performance, no beneficial effects in terms of anxiety phenotype, working memory performance, Aß plaque load, Aß1-42 levels, endogenous APP processing and inflammatory status were observed in 5XFAD mice. Concordantly, no changes in expression levels of BACE1 or Aß-degrading enzymes like neprilysin or insulin-degrading enzyme could be detected in active mice. The 5XFAD model develops a relatively fast and aggressive pathology and therefore presents a model for early onset familial AD. Our results suggest that an intervention like EE might be too mild to counteract the fast disease progression seen in this model. Therefore, our data provide evidence that the effects of physical and cognitive stimulation vary depending on the severity of the pathology of the model and therefore might be more beneficial in models developing a milder AD phenotype.


Subject(s)
Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Brain/pathology , Environment , Housing, Animal , Memory, Short-Term/physiology , Peptide Fragments/metabolism , Alzheimer Disease/metabolism , Animals , Brain/metabolism , Disease Models, Animal , Disease Progression , Female , Maze Learning/physiology , Mice , Mice, Transgenic
20.
Mol Neurodegener ; 11: 19, 2016 Feb 19.
Article in English | MEDLINE | ID: mdl-26895626

ABSTRACT

BACKGROUND: The metalloprotease meprin ß cleaves the Alzheimer's Disease (AD) relevant amyloid precursor protein (APP) as a ß-secretase reminiscent of BACE-1, however, predominantly generating N-terminally truncated Aß2-x variants. RESULTS: Herein, we observed increased endogenous sAPPα levels in the brains of meprin ß knock-out (ko) mice compared to wild-type controls. We further analyzed the cellular interaction of APP and meprin ß and found that cleavage of APP by meprin ß occurs prior to endocytosis. The N-terminally truncated Aß2-40 variant shows increased aggregation propensity compared to Aß1-40 and acts even as a seed for Aß1-40 aggregation. Additionally, we observed that different APP mutants affect the catalytic properties of meprin ß and that, interestingly, meprin ß is unable to generate N-terminally truncated Aß peptides from Swedish mutant APP (APPswe). CONCLUSION: Concluding, we propose that meprin ß may be involved in the generation of N-terminally truncated Aß2-x peptides of APP, but acts independently from BACE-1.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Metalloendopeptidases/metabolism , Neurons/metabolism , Amyloid Precursor Protein Secretases/metabolism , Animals , Aspartic Acid Endopeptidases/metabolism , Brain/metabolism , Mice, Knockout
SELECTION OF CITATIONS
SEARCH DETAIL
...