Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
ChemSusChem ; 13(20): 5480-5488, 2020 Oct 21.
Article in English | MEDLINE | ID: mdl-32798240

ABSTRACT

Quinone-based, aqueous redox flow batteries are a promising technology for large-scale, low-cost energy storage. To understand the influence of substituent and substituent pattern effects of quinone-based derivatives on the redox potential, a screening study was performed that included benzoquinone, naphtaquinone, and anthraquinone derivatives. The order of substituent influence is -OH>-Me/-OMe for decreasing the redox potential and -F<-SO3 - <-CN, -NO2 for increasing the redox potential, which is in agreement with general expectations. We found that the consideration of resonance and inductive effects design strategies of redox-active materials can be extended by the ability of intramolecular hydrogen bond formation, steric hindrance, and energetic differences of conformers for oxidized and reduced species. Due to the complexity and overlap of these effects, theoretical screening studies can provide guidance for the design of new molecular materials. In addition to the redox potential, other parameters such as stability, solubility, and kinetic rate constant or synthetic accessibility are crucial to consider.

SELECTION OF CITATIONS
SEARCH DETAIL
...