Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Netw Neurosci ; 7(2): 557-577, 2023.
Article in English | MEDLINE | ID: mdl-37397892

ABSTRACT

The dynamic integration of sensory and bodily signals is central to adaptive behaviour. Although the anterior cingulate cortex (ACC) and the anterior insular cortex (AIC) play key roles in this process, their context-dependent dynamic interactions remain unclear. Here, we studied the spectral features and interplay of these two brain regions using high-fidelity intracranial-EEG recordings from five patients (ACC: 13 contacts, AIC: 14 contacts) acquired during movie viewing with validation analyses performed on an independent resting intracranial-EEG dataset. ACC and AIC both showed a power peak and positive functional connectivity in the gamma (30-35 Hz) frequency while this power peak was absent in the resting data. We then used a neurobiologically informed computational model investigating dynamic effective connectivity asking how it linked to the movie's perceptual (visual, audio) features and the viewer's heart rate variability (HRV). Exteroceptive features related to effective connectivity of ACC highlighting its crucial role in processing ongoing sensory information. AIC connectivity was related to HRV and audio emphasising its core role in dynamically linking sensory and bodily signals. Our findings provide new evidence for complementary, yet dissociable, roles of neural dynamics between the ACC and the AIC in supporting brain-body interactions during an emotional experience.

2.
Stem Cells Int ; 2017: 3548435, 2017.
Article in English | MEDLINE | ID: mdl-28951742

ABSTRACT

INTRODUCTION: The aim of the study was an evaluation of different approaches for guided bone regeneration (GBR) of peri-implant defects in an in vivo animal model. MATERIALS AND METHODS: In minipigs (n = 15), peri-implant defects around calcium phosphate- (CaP-; n = 46) coated implants were created and randomly filled with (1) blank, (2) collagen/hydroxylapatite/ß-tricalcium phosphate scaffold (CHT), (3) CHT + growth factor cocktail (GFC), (4) jellyfish collagen matrix, (5) jellyfish collagen matrix + GFC, (6) collagen powder, and (7) collagen powder + periodontal ligament stem cells (PDLSC). Additional collagen membranes were used for coverage of the defects. After 120 days of healing, bone growth was evaluated histologically (bone to implant contact (BIC;%)), vertical bone apposition (VBA; mm), and new bone height (NBH; %). RESULTS: In all groups, new bone formation was seen. Though, when compared to the blank group, no significant differences were detected for all parameters. BIC and NBH in the group with collagen matrix as well as the group with the collagen matrix + GFC were significantly less when compared to the collagen powder group (all: p < 0.003). CONCLUSION: GBR procedures, in combination with CaP-coated implants, will lead to an enhancement of peri-implant bone growth. There was no additional significant enhancement of osseous regeneration when using GFC or PDLSC.

3.
J Exp Psychol Gen ; 146(9): 1360-1365, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28846006

ABSTRACT

Emotion elicited through music transfers to subsequent processing of facial expressions. Music may accordingly function as a social technology by promoting social bonding. Here, we investigated whether music would cross-modally influence the perception of sensual touch, a behavior related to mating. A robot applied precisely controlled gentle touch to a group of healthy participants while they listened to music that varied with respect to its perceived sexiness. As the perceived sexiness of the music increased, so did the subjective sexiness of the touch stimulations. In short, the perception of sexiness transferred from music to touch. Because sensual touch is key to mating behavior and relates to procreation, this association has implications for the universality and evolutionary significance of music. (PsycINFO Database Record


Subject(s)
Facial Expression , Music/psychology , Sexual Behavior/psychology , Touch/physiology , Adult , Auditory Perception/physiology , Emotions/physiology , Female , Humans , Male , Young Adult
4.
World J Transplant ; 7(3): 193-202, 2017 Jun 24.
Article in English | MEDLINE | ID: mdl-28698836

ABSTRACT

AIM: To investigate osteoconductive and antimicrobial properties of a titanium-copper-nitride (TiCuN) film and an additional BONIT® coating on titanium substrates. METHODS: For micro-structuring, the surface of titanium test samples was modified by titanium plasma spray (TPS). On the TPS-coated samples, the TiCuN layer was deposited by physical vapor deposition. The BONIT® layer was coated electrochemically. The concentration of copper ions released from TiCuN films was measured by atomic absorption spectrometry. MG-63 osteoblasts on TiCuN and BONIT® were analyzed for cell adhesion, viability and spreading. In parallel, Staphylococcus epidermidis (S. epidermidis) were cultivated on the samples and planktonic and biofilm-bound bacteria were quantified by counting of the colony-forming units. RESULTS: Field emission scanning electron microscopy (FESEM) revealed rough surfaces for TPS and TiCuN and a special crystalline surface structure on TiCuN + BONIT®. TiCuN released high amounts of copper quickly within 24 h. These release dynamics were accompanied by complete growth inhibition of bacteria and after 2 d, no planktonic or adherent S. epidermidis were found on these samples. On the other hand viability of MG-63 cells was impaired during direct cultivation on the samples within 24 h. However, high cell colonization could be found after a 24 h pre-incubation step in cell culture medium simulating the in vivo dynamics closer. On pre-incubated TiCuN, the osteoblasts span the ridges and demonstrate a flattened, well-spread phenotype. The additional BONIT®coating reduced the copper release of the TiCuN layer significantly and showed a positive effect on the initial cell adhesion. CONCLUSION: The TiCuNcoating inhibits the formation of bacterial biofilms on orthopedic implants by influencing the "race for the surface" to the advantage of osteoblasts.

5.
Biofouling ; 33(4): 294-305, 2017 04.
Article in English | MEDLINE | ID: mdl-28349700

ABSTRACT

Bacterial colonisation and biofilm formation are characteristics of implant-associated infections. In search of candidates for improved prosthetic materials, fast corroding Mg-based coatings on titanium surfaces were examined for their cytotoxic and antimicrobial properties. Human osteoblasts and Staphylococcus epidermidis were each cultured on cylindrical Ti samples coated with a thin layer of Mg/Mg45Zn5Ca, applied via magnetron sputtering. Uncoated titanium samples served as controls. S. epidermidis was quantified by counting colony forming units. The biofilm-bound fraction was isolated via ultrasonic treatment, and the planktonic fraction via centrifugation. Biofilm-bound S. epidermidis was significantly decreased by approximately four to five orders of magnitude in both Mg- and Mg45Zn5Ca-coated samples after seven days compared to the control. The osteoblast viability was within the tolerance threshold of 70% stated in DIN EN ISO 10993-5:2009-10 for Mg (~80%) but not for Mg45Zn5Ca (~25%). Accordingly, Mg-coated titanium was identified as a promising candidate for an implant material with antibacterial properties and low cytotoxicity levels. The approach of exploiting fast corrosion contrasts with existing methods, which have generally focused on reducing corrosion.


Subject(s)
Alloys/chemistry , Anti-Bacterial Agents/pharmacology , Coated Materials, Biocompatible/pharmacology , Magnesium/pharmacology , Prostheses and Implants/microbiology , Staphylococcus epidermidis/drug effects , Titanium/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/toxicity , Biofilms/drug effects , Cell Survival/drug effects , Cells, Cultured , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/toxicity , Corrosion , Humans , Magnesium/chemistry , Magnesium/toxicity , Osteoblasts/drug effects
6.
PLoS One ; 11(3): e0151534, 2016.
Article in English | MEDLINE | ID: mdl-26982194

ABSTRACT

OBJECTIVES: Total joint arthroplasty is one of the most frequent and effective surgeries today. However, despite improved surgical techniques, a significant number of implant-associated infections still occur. Suitable in vitro models are needed to test potential approaches to prevent infection. In the present study, we aimed to establish an in vitro co-culture setup of human primary osteoblasts and S. epidermidis to model the onset of implant-associated infections, and to analyze antimicrobial implant surfaces and coatings. MATERIALS AND METHODS: For initial surface adhesion, human primary osteoblasts (hOB) were grown for 24 hours on test sample discs made of polystyrene, titanium alloy Ti6Al4V, bone cement PALACOS R®, and PALACOS R® loaded with antibiotics. Co-cultures were performed as a single-species infection on the osteoblasts with S. epidermidis (multiplicity of infection of 0.04), and were incubated for 2 and 7 days under aerobic conditions. Planktonic S. epidermidis was quantified by centrifugation and determination of colony-forming units (CFU). The quantification of biofilm-bound S. epidermidis on the test samples was performed by sonication and CFU counting. Quantification of adherent and vital primary osteoblasts on the test samples was performed by trypan-blue staining and counting. Scanning electron microscopy was used for evaluation of topography and composition of the species on the sample surfaces. RESULTS: After 2 days, we observed approximately 104 CFU/ml biofilm-bound S. epidermidis (103 CFU/ml initial population) on the antibiotics-loaded bone cement samples in the presence of hOB, while no bacteria were detected without hOB. No biofilm-bound bacteria were detectable after 7 days in either case. Similar levels of planktonic bacteria were observed on day 2 with and without hOB. After 7 days, about 105 CFU/ml planktonic bacteria were present, but only in the absence of hOB. Further, no bacteria were observed within the biofilm, while the number of hOB was decreased to 10% of its initial value compared to 150% in the mono-culture of hOB. CONCLUSION: We developed a co-culture setup that serves as a more comprehensive in vitro model for the onset of implant-associated infections and provides a test method for antimicrobial implant materials and coatings. We demonstrate that observations can be made that are unavailable from mono-culture experiments.


Subject(s)
Osteoblasts/cytology , Prosthesis-Related Infections/prevention & control , Staphylococcus epidermidis/physiology , Coculture Techniques , Humans , In Vitro Techniques , Models, Biological , Surface Properties
7.
Sci Rep ; 5: 10209, 2015 May 13.
Article in English | MEDLINE | ID: mdl-25969895

ABSTRACT

This study investigated effects of caffeine ingestion (8 mg/kg) on maximum voluntary torque (MVT) and voluntary activation of the quadriceps during isometric, concentric and eccentric contractions. Fourteen subjects ingested caffeine and placebo in a randomized, controlled, counterbalanced, double-blind crossover design. Neuromuscular tests were performed before and 1 h after oral caffeine and placebo intake. MVTs were measured and the interpolated twitch technique was applied during isometric, concentric and eccentric contractions to assess voluntary activation. Furthermore, normalized root mean square of the EMG signal was calculated and evoked spinal reflex responses (H-reflex evoked at rest and during weak isometric voluntary contraction) as well as twitch torques were analyzed. Caffeine increased MVT by 26.4 N m (95%CI: 9.3-43.5 N m, P = 0.004), 22.5 N m (95%CI: 3.1-42.0 N m, P = 0.025) and 22.5 N m (95%CI: 2.2-42.7 N m, P = 0.032) for isometric, concentric and eccentric contractions. Strength enhancements were associated with increases in voluntary activation. Explosive voluntary strength and voluntary activation at the onset of contraction were significantly increased following caffeine ingestion. Changes in spinal reflex responses and at the muscle level were not observed. Data suggest that caffeine ingestion induced an acute increase in voluntary activation that was responsible for the increased strength regardless of the contraction mode.


Subject(s)
Caffeine/pharmacology , Muscle Contraction/drug effects , Muscle Strength/drug effects , Quadriceps Muscle/drug effects , Quadriceps Muscle/physiology , Adult , Electromyography , Evoked Potentials/drug effects , Female , Humans , Male , Young Adult
8.
Biomed Res Int ; 2014: 742180, 2014.
Article in English | MEDLINE | ID: mdl-25295270

ABSTRACT

Ceramic materials show excellent esthetic behavior, along with an absence of hypersensitivity, making them a possible alternative implant material in dental surgery. However, their surface properties enable only limited osseointegration compared to titanium implants. Within this study, a novel surface coating technique for enhanced osseointegration was investigated biologically and mechanically. Specimens of tetragonal zirconia polycrystal (TZP) and aluminum toughened zirconia (ATZ) were modified with glass solder matrices in two configurations which mainly consisted of SiO2, Al2O3, K2O, and Na2O. The influence on human osteoblastic and epithelial cell viability was examined by means of a WST-1 assay as well as live/dead staining. A C1CP-ELISA was carried out to verify procollagen type I production. Uncoated/sandblasted ceramic specimens and sandblasted titanium surfaces were investigated as a reference. Furthermore, mechanical investigations of bilaterally coated pellets were conducted with respect to surface roughness and adhesive strength of the different coatings. These tests could demonstrate a mechanically stable implant coating with glass solder matrices. The coated ceramic specimens show enhanced osteoblastic and partly epithelial viability and matrix production compared to the titanium control. Hence, the new glass solder matrix coating could improve bone cell growth as a prerequisite for enhanced osseointegration of ceramic implants.


Subject(s)
Dental Implants/adverse effects , Epithelial Cells/drug effects , Osseointegration/drug effects , Osteoblasts/drug effects , Ceramics/adverse effects , Coated Materials, Biocompatible/adverse effects , Dental Materials/adverse effects , Glass/chemistry , Humans , Primary Cell Culture , Silicon Dioxide/metabolism , Surface Properties , Titanium/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...