Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
2.
Rev Sci Instrum ; 91(8): 083503, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32872937

ABSTRACT

Coated glass targets are a key component of the Wendelstein 7-X laser blow-off system that is used for impurity transport studies. The preparation and analysis of these glass targets as well as their performance is examined in this paper. The glass targets have a high laser damage threshold and are coated via physical vapor deposition with µm thick films. In addition, nm-thin layers of Ti are used as an interface layer for improved ablation efficiency and reduced coating stress. Hence, the metallic or ceramic coating has a lateral homogeneity within 2% and contaminants less than 5%, being optimal for laser ablation processing. With this method, a short (few ms) and well defined pulse of impurities with about 1017 particles can be injected close to the last closed flux surface of Wendelstein 7-X. In particular, a significant amount of atoms with a velocity of about 1 km/s enters the plasma within 1 ms. The atoms are followed by a negligible concentration of slower clusters and macro-particles. This qualifies the use of the targets and applied laser settings for impurity transport studies with the laser blow-off system in Wendelstein 7-X.

3.
Rev Sci Instrum ; 91(2): 023507, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-32113444

ABSTRACT

The Charge Exchange Recombination Spectroscopy (CXRS) diagnostic has become a routine diagnostic on almost all major high temperature fusion experimental devices. For the optimized stellarator Wendelstein 7-X (W7-X), a highly flexible and extensive CXRS diagnostic has been built to provide high-resolution local measurements of several important plasma parameters using the recently commissioned neutral beam heating. This paper outlines the design specifics of the W7-X CXRS system and gives examples of the initial results obtained, including typical ion temperature profiles for several common heating scenarios, toroidal flow and radial electric field derived from velocity measurements, beam attenuation via beam emission spectra, and normalized impurity density profiles under some typical plasma conditions.

4.
Rev Sci Instrum ; 89(10): 10F111, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30399723

ABSTRACT

The paper reports on the optimization process of the soft X-ray pulse height analyzer installed on the Wendelstein 7-X (W7-X) stellarator. It is a 3-channel system that records X-ray spectra in the range from 0.6 to 19.6 keV. X-ray spectra, with a temporal and spatial resolution of 100 ms and 2.5 cm (depending on selected slit sizes), respectively, are line integrated along a line-of-sight that crosses near to the plasma center. In the second W7-X operation phase with a carbon test divertor unit, light impurities, e.g., carbon and oxygen, were observed as well as mid- to high-Z elements, e.g., sulfur, chlorine, chromium, manganese, iron, and nickel. In addition, X-ray lines from several tracer elements have been observed after the laser blow-off injection of different impurities, e.g., silicon, titanium, and iron, and during discharges with prefill or a gas puff of neon or argon. These measurements were achieved by optimizing light absorber-foil selection, which defines the detected energy range, and remotely controlled pinhole size, which defines photon flux. The identification of X-ray lines was confirmed by other spectroscopic diagnostics, e.g., by the High-Efficiency XUV Overview Spectrometer, HEXOS, and high-resolution X-ray imaging spectrometer, HR-XIS.

5.
Rev Sci Instrum ; 89(10): 10G101, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30399890

ABSTRACT

This paper reports on the design and the performance of the recently upgraded X-ray imaging spectrometer systems, X-ray imaging crystal spectrometer and high resolution X-ray imaging spectrometer, installed at the optimized stellarator Wendelstein 7-X. High resolution spectra of highly ionized, He-like Si, Ar, Ti, and Fe as well as H-like Ar have been observed. A cross comparison of ion and electron temperature profiles derived from a spectral fit and tomographic inversion of Ar and Fe spectra shows a reasonable match with both the spectrometers. The also measured impurity density profiles of Ar and Fe have peaked densities at radial positions that are in qualitative agreement with the expectations from the He-like impurity fractional abundances, given the measured temperature profiles. Repeated measurements of impurity decay times have been demonstrated with an accuracy of 1 ms via injection of non-recycling Ti, Fe, and Mo impurities using a laser blow-off system.

6.
Rev Sci Instrum ; 89(7): 073505, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30068134

ABSTRACT

We present a detailed overview and first results of the new laser blow-off system on the stellarator Wendelstein 7-X. The system allows impurity transport studies by the repetitive and controlled injection of different tracer ions into the plasma edge. A Nd:YAG laser is used to ablate a thin metal film, coated on a glass plate, with a repetition rate of up to 20 Hz. A remote-controlled adjustable optical system allows the variation of the laser spot diameter and enables the spot positioning to non-ablated areas on the target between laser pulses. During first experiments, clear spectral lines from higher ionization stages of the tracer ions have been observed in the X-ray to the extreme ultraviolet spectral range. The temporal behavior of the measured emission allows the estimate of transport properties, e.g., impurity transport times in the order of 100 ms. Although the strong injection of impurities is well detectable, the global plasma parameters are barely changed.

SELECTION OF CITATIONS
SEARCH DETAIL
...