Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Microbiol ; 121(4): 798-813, 2024 04.
Article in English | MEDLINE | ID: mdl-38284496

ABSTRACT

Small multidrug resistance transporters efflux toxic compounds from bacteria and are a minimal system to understand multidrug transport. Most previous studies have focused on EmrE, the model SMR from Escherichia coli, finding that EmrE has a broader substrate profile than previously thought and that EmrE may perform multiple types of transport, resulting in substrate-dependent resistance or susceptibility. Here, we performed a broad screen to identify potential substrates of three other SMRs: PAsmr from Pseudomonas aeruginosa; FTsmr from Francisella tularensis; and SAsmr from Staphylococcus aureus. This screen tested metabolic differences in E. coli expressing each transporter versus an inactive mutant, for a clean comparison of sequence and substrate-specific differences in transporter function, and identified many substrates for each transporter. In general, resistance compounds were charged, and susceptibility substrates were uncharged, but hydrophobicity was not correlated with phenotype. Two resistance hits and two susceptibility hits were validated via growth assays and IC50 calculations. Susceptibility is proposed to occur via substrate-gated proton leak, and the addition of bicarbonate antagonizes the susceptibility phenotype, consistent with this hypothesis.


Subject(s)
Escherichia coli Proteins , Francisella tularensis , Escherichia coli/genetics , Francisella tularensis/metabolism , Pseudomonas aeruginosa/metabolism , Staphylococcus aureus/metabolism , Escherichia coli Proteins/metabolism , Antiporters/genetics , Membrane Transport Proteins/metabolism , Drug Resistance, Multiple
2.
Medicina (Kaunas) ; 58(12)2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36557055

ABSTRACT

Background and Objectives: To achieve pregnancy, it is highly beneficial to identify the time of ovulation as well as the greater period of fertile days during which sperm may survive leading up to ovulation. Confirming successful ovulation is also critical to accurately diagnose ovulatory disorders. Ovulation predictor kits, fertility monitors, and tracking apps are all available to assist with detecting ovulation, but often fall short. They may not detect the full fertile window, provide accurate or real-time information, or are simply expensive and impractical. Finally, few over-the-counter products provide information to women about their ovarian reserve and future fertility. Therefore, there is a need for an easy, over-the-counter, at-home quantitative hormone monitoring system that assesses ovarian reserve, predicts the entire fertile window, and can screen for ovulatory disorders. Materials and Methods: Proov Complete is a four-in-one at-home multihormone testing system that utilizes lateral flow assay test strips paired with the free Proov Insight App to guide testing of four hormones-FSH, E1G, LH, and PdG-across the woman's cycle. In a pilot study, 40 women (including 16 with a fertility-related diagnosis or using fertility treatments) used Complete for one cycle. Results: Here, we demonstrate that Proov Complete can accurately and sensitively predict ovarian reserve, detect up to 6 fertile days and confirm if ovulation was successful, in one easy-to-use kit. Ovulation was confirmed in 38 cycles with a detectable PdG rise. An average of 5.3 fertile days (from E1G rise to PdG rise) were detected, with an average of 2.7 days prior to LH surge. Ovulation was confirmed via PdG rise an average of 2.6 days following the LH surge. While 38/40 women had a PdG rise, only 22 had a sustained PdG level above 5 µg/mL throughout the critical implantation window, indicating ovulatory dysfunction in 16 women. Conclusions: Proov Complete can detect the entire fertile window of up to 6 fertile days and confirm ovulation, while also providing information on ovarian reserve and guidance to clinicians and patients.


Subject(s)
Ovulation , Semen , Male , Female , Humans , Pilot Projects , Fertility , Luteinizing Hormone
3.
Viruses ; 14(10)2022 09 30.
Article in English | MEDLINE | ID: mdl-36298715

ABSTRACT

Yeast prions are protein-based transmissible elements, most of which are amyloids. The chaperone protein network in yeast is inexorably linked to the spreading of prions during cell division by fragmentation of amyloid prion aggregates. Specifically, the core "prion fragmentation machinery" includes the proteins Hsp104, Hsp70 and the Hsp40/J-domain protein (JDP) Sis1. Numerous novel amyloid-forming proteins have been created and examined in the yeast system and occasionally these amyloids are also capable of continuous Hsp104-dependent propagation in cell populations, forming synthetic prions. However, additional chaperone requirements, if any, have not been determined. Here, we report the first instances of a JDP-Hsp70 system requirement for the propagation of synthetic prions. We utilized constructs from a system of engineered prions with prion-forming domains (PrDs) consisting of a polyQ stretch interrupted by a single heterologous amino acid interspersed every fifth residue. These "polyQX" PrDs are fused to the MC domains of Sup35, creating chimeric proteins of which a subset forms synthetic prions in yeast. For four of these prions, we show that SIS1 repression causes prion loss in a manner consistent with Sis1's known role in prion fragmentation. PolyQX prions were sensitive to Sis1 expression levels to differing degrees, congruent with the variability observed among native prions. Our results expand the scope known Sis1 functionality, demonstrating that Sis1 acts on amyloids broadly, rather than through specific protein-protein interactions with individual yeast prion-forming proteins.


Subject(s)
Prions , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Prions/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Molecular Chaperones/metabolism , HSP70 Heat-Shock Proteins/metabolism , Amyloid/chemistry , Amyloidogenic Proteins/metabolism , Amino Acids/metabolism , Recombinant Fusion Proteins/metabolism , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Peptide Termination Factors/genetics , Peptide Termination Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...