Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Nano Lett ; 23(2): 573-579, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36622289

ABSTRACT

Mott-Hubbard and Hund electron correlations have been realized thus far in separate classes of materials. Here, we show that a single moiré homobilayer encompasses both kinds of physics in a controllable manner. We develop a microscopic multiband model that we solve by dynamical mean-field theory to nonperturbatively address the local many-body correlations. We demonstrate how tuning with twist angle, dielectric screening, and hole density allows us to switch between Mott-Hubbard and Hund correlated states in a twisted WSe2 bilayer. The underlying mechanism is based on controlling Coulomb-interaction-driven orbital polarization and the energetics of concomitant local singlet and triplet spin configurations. From a comparison to recent experimental transport data, we find signatures of a filling-controlled transition from a triplet charge-transfer insulator to a Hund-Mott metal. Our finding establishes twisted transition-metal dichalcogenides as a tunable platform for exotic phases of quantum matter emerging from large local spin moments.

2.
NPJ 2D Mater Appl ; 7(1): 47, 2023.
Article in English | MEDLINE | ID: mdl-38665482

ABSTRACT

Two-dimensional materials can be strongly influenced by their surroundings. A dielectric environment screens and reduces the Coulomb interaction between electrons in the two-dimensional material. Since in Mott materials the Coulomb interaction is responsible for the insulating state, manipulating the dielectric screening provides direct control over Mottness. Our many-body calculations reveal the spectroscopic fingerprints of such Coulomb engineering: we demonstrate eV-scale changes to the position of the Hubbard bands and show a Coulomb engineered insulator-to-metal transition. Based on our proof-of-principle calculations, we discuss the (feasible) conditions under which our scenario of Coulomb engineering of Mott materials can be realized experimentally.

3.
Phys Rev Lett ; 123(20): 206403, 2019 Nov 15.
Article in English | MEDLINE | ID: mdl-31809088

ABSTRACT

We investigate the effects of external dielectric screening on the electronic dispersion and the band gap in the atomically thin, quasi-two-dimensional (2D) semiconductor WS_{2} using angle-resolved photoemission and optical spectroscopies, along with first-principles calculations. We find the main effect of increased external dielectric screening to be a reduction of the quasiparticle band gap, with rigid shifts to the bands themselves. Specifically, the band gap of monolayer WS_{2} is decreased by about 140 meV on a graphite substrate as compared to a hexagonal boron nitride substrate, while the electronic dispersion of WS_{2} remains unchanged within our experimental precision of 17 meV. These essentially rigid shifts of the valence and conduction bands result from the special spatial structure of the changes in the Coulomb potential induced by the dielectric environment of the monolayer.

4.
J Phys Condens Matter ; 31(46): 465603, 2019 Nov 20.
Article in English | MEDLINE | ID: mdl-31362270

ABSTRACT

The theory of correlated electrons is currently moving beyond the paradigmatic Hubbard U, towards the investigation of intersite Coulomb interactions. Recent investigations have revealed that these interactions are relevant for the quantitative description of realistic materials. Physically, intersite interactions are responsible for two rather different effects: screening and bandwidth renormalization. We use a variational principle to disentangle the roles of these two processes and study how appropriate the recently proposed Fock treatment of intersite interactions is in correlated systems. The magnitude of this effect in graphene is calculated based on cRPA values of the intersite interaction. We also apply the variational principle to benzene and find effective parameters comparable to those obtained by ab initio density matrix downfolding.

5.
Nano Lett ; 19(5): 3182-3186, 2019 05 08.
Article in English | MEDLINE | ID: mdl-30945871

ABSTRACT

The observation of quantum light emission from atomically thin transition metal dichalcogenides has opened a new field of applications for these material systems. The corresponding excited charge-carrier localization has been linked to defects and strain, while open questions remain regarding the microscopic origin. We demonstrate that the bending rigidity of these materials leads to wrinkling of the two-dimensional layer. The resulting strain field facilitates strong carrier localization due to its pronounced influence on the band gap. Additionally, we consider charge carrier confinement due to local changes of the dielectric environment and show that both effects contribute to modified electronic states and optical properties. The interplay of surface wrinkling, strain-induced confinement, and local changes of the dielectric environment is demonstrated for the example of nanobubbles that form when monolayers are deposited on substrates or other two-dimensional materials.

6.
Nat Commun ; 10(1): 180, 2019 01 14.
Article in English | MEDLINE | ID: mdl-30643132

ABSTRACT

Charge transfers resulting from weak bondings between two-dimensional materials and the supporting substrates are often tacitly associated with their work function differences. In this context, two-dimensional materials could be normally doped at relatively low levels. Here, we demonstrate how even weak hybridization with substrates can lead to an apparent heavy doping, using the example of monolayer 1H-TaS2 grown on Au(111). Ab-initio calculations show that sizable changes in Fermi areas can arise, while the transferred charge between substrate and two-dimensional material is much smaller than the variation of Fermi areas suggests. This mechanism, which we refer to as pseudodoping, is associated with non-linear energy-dependent shifts of electronic spectra, which our scanning tunneling spectroscopy experiments reveal for clean and defective TaS2 monolayer on Au(111). The influence of pseudodoping on the formation of many-body states in two-dimensional metallic materials is analyzed, shedding light on utilizing pseudodoping to control electronic phase diagrams.

7.
Nano Lett ; 18(4): 2725-2732, 2018 04 11.
Article in English | MEDLINE | ID: mdl-29558797

ABSTRACT

The electronic and optical properties of monolayer transition-metal dichalcogenides (TMDs) and van der Waals heterostructures are strongly subject to their dielectric environment. In each layer, the field lines of the Coulomb interaction are screened by the adjacent material, which reduces the single-particle band gap as well as exciton and trion binding energies. By combining an electrostatic model for a dielectric heteromultilayered environment with semiconductor many-particle methods, we demonstrate that the electronic and optical properties are sensitive to the interlayer distances on the atomic scale. An analytic treatment is used to provide further insight into how the interlayer gap influences different excitonic transitions. Spectroscopical measurements in combination with a direct solution of a three-particle Schrödinger equation reveal trion binding energies that correctly predict recently measured interlayer distances and shed light on the effect of temperature annealing.

8.
Nano Lett ; 17(11): 6721-6726, 2017 11 08.
Article in English | MEDLINE | ID: mdl-28978200

ABSTRACT

We analyze the interplay of spin-valley coupling, orbital physics, and magnetic anisotropy taking place at single magnetic atoms adsorbed on semiconducting transition metal dichalcogenides, MX2 (M = Mo, W; X = S, Se). Orbital selection rules turn out to govern the kinetic exchange coupling between the adatom and charge carriers in the MX2 and lead to highly orbitally dependent spin-flip scattering rates, as we illustrate for the example of transition metal adatoms with d9 configuration. Our ab initio calculations suggest that d9 configurations are realizable by single Co, Rh, or Ir adatoms on MoS2, which additionally exhibit a sizable magnetic anisotropy. We find that the interaction of the adatom with carriers in the MX2 allows to tune its behavior from a quantum regime with full Kondo screening to a regime of "Ising spintronics" where its spin-orbital moment acts as classical bit, which can be erased and written electronically and optically.

9.
Phys Rev Lett ; 115(23): 236101, 2015 Dec 04.
Article in English | MEDLINE | ID: mdl-26684126

ABSTRACT

We use scanning tunneling microscopy to visualize and thermal desorption spectroscopy to quantitatively measure that the binding of naphthalene molecules to graphene, a case of pure van der Waals interaction, strengthens with n and weakens with p doping of graphene. Density-functional theory calculations that include the van der Waals interaction in a seamless, ab initio way accurately reproduce the observed trend in binding energies. Based on a model calculation, we propose that the van der Waals interaction is modified by changing the spatial extent of graphene's π orbitals via doping.

10.
Phys Rev Lett ; 114(12): 125503, 2015 Mar 27.
Article in English | MEDLINE | ID: mdl-25860758

ABSTRACT

We modulate the atomic structure of bilayer graphene by driving its lattice at resonance with the in-plane E_{1u} lattice vibration at 6.3 µm. Using time- and angle-resolved photoemission spectroscopy (tr-ARPES) with extreme-ultraviolet (XUV) pulses, we measure the response of the Dirac electrons near the K point. We observe that lattice modulation causes anomalous carrier dynamics, with the Dirac electrons reaching lower peak temperatures and relaxing at faster rate compared to when the excitation is applied away from the phonon resonance or in monolayer samples. Frozen phonon calculations predict dramatic band structure changes when the E_{1u} vibration is driven, which we use to explain the anomalous dynamics observed in the experiment.

11.
Phys Rev Lett ; 114(4): 047403, 2015 Jan 30.
Article in English | MEDLINE | ID: mdl-25679908

ABSTRACT

In this Letter, we study the electronic structures and optical properties of partially and fully fluorinated graphene by a combination of ab initio G0W0 calculations and large-scale multiorbital tight-binding simulations. We find that, for partially fluorinated graphene, the appearance of paired fluorine atoms is more favorable than unpaired atoms. We also show that different types of structural disorder, such as carbon vacancies, fluorine vacancies, fluorine vacancy clusters and fluorine armchair and zigzag clusters, will introduce different types of midgap states and extra excitations within the optical gap. Furthermore, we argue that the local formation of sp3 bonds upon fluorination can be distinguished from other disorder inducing mechanisms which do not destroy the sp2 hybrid orbitals by measuring the polarization rotation of passing polarized light.

12.
Phys Rev Lett ; 113(24): 246601, 2014 Dec 12.
Article in English | MEDLINE | ID: mdl-25541789

ABSTRACT

Hydrogen adatoms and other species covalently bound to graphene act as resonant scattering centers affecting the electronic transport properties and inducing Anderson localization. We show that attractive interactions between adatoms on graphene and their diffusion mobility strongly modify the spatial distribution, thus fully eliminating isolated adatoms and increasing the population of larger size adatom aggregates. Such spatial correlation is found to strongly influence the electronic transport properties of disordered graphene. Our scaling analysis shows that such aggregation of adatoms increases conductance by up to several orders of magnitude and results in significant extension of the Anderson localization length in the strong localization regime. We introduce a simple definition of the effective adatom concentration x*, which describes the transport properties of both random and correlated distributions of hydrogen adatoms on graphene across a broad range of concentrations.

13.
Nano Lett ; 13(12): 6251-5, 2013.
Article in English | MEDLINE | ID: mdl-24206392

ABSTRACT

Topological insulators (TIs) represent a new quantum state of matter characterized by robust gapless states inside the insulating bulk gap. The metallic edge states of a two-dimensional (2D) TI, known as the quantum spin Hall (QSH) effect, are immune to backscattering and carry fully spin-polarized dissipationless currents. However, existing 2D TIs realized in HgTe and InAs/GaSb suffer from small bulk gaps (<10 meV) well below room temperature, thus limiting their application in electronic and spintronic devices. Here, we report a new 2D TI comprising a graphene layer sandwiched between two Bi2Se3 slabs that exhibits a large intrinsic bulk band gap of 30-50 meV, making it viable for room-temperature applications. Distinct from previous strategies for enhancing the intrinsic spin-orbit coupling effect of the graphene lattice, the present graphene-based TI operates on a new mechanism of strong inversion between graphene Dirac bands and Bi2Se3 conduction bands. Strain engineering leads to effective control and substantial enhancement of the bulk gap. Recently reported synthesis of smooth graphene/Bi2Se3 interfaces demonstrates the feasibility of experimental realization of this new 2D TI structure, which holds great promise for nanoscale device applications.


Subject(s)
Graphite/chemistry , Nanostructures/chemistry , Surface Properties , Bismuth/chemistry , Electronics , Membranes, Artificial , Quantum Dots/chemistry , Selenium/chemistry , Temperature
14.
Nano Lett ; 13(11): 5013-9, 2013 Nov 13.
Article in English | MEDLINE | ID: mdl-24131290

ABSTRACT

The ease by which graphene is affected through contact with other materials is one of its unique features and defines an integral part of its potential for applications. Here, it will be demonstrated that intercalation, the insertion of atomic layers in between the backside of graphene and the supporting substrate, is an efficient tool to change its interaction with the environment on the frontside. By partial intercalation of graphene on Ir(111) with Eu or Cs we induce strongly n-doped graphene patches through the contact with these intercalants. They coexist with nonintercalated, slightly p-doped graphene patches. We employ these backside doping patterns to directly visualize doping induced binding energy differences of ionic adsorbates to graphene through low-temperature scanning tunneling microscopy. Density functional theory confirms these binding energy differences and shows that they are related to the graphene doping level.

15.
Phys Rev Lett ; 110(8): 086111, 2013 Feb 22.
Article in English | MEDLINE | ID: mdl-23473177

ABSTRACT

Intercalation of Eu under graphene on Ir(111) results in patterns oriented along the graphene moiré and quantized in size by its unit mesh. The patterns are formed by stripes, compact islands, and channels. Over a wide range of intercalated amounts the step concentration of the pattern has a rather constant saturation value. These findings are explained by the chemically modulated binding of graphene to the substrate and the preexisting strain in graphene due to its cooldown from the growth temperature. Local variations in the intercalation step density appear to reflect local variations in the preexisting strain.

16.
Phys Rev Lett ; 107(7): 076601, 2011 Aug 12.
Article in English | MEDLINE | ID: mdl-21902412

ABSTRACT

Hot carrier-induced spin dynamics is analyzed in epitaxial Au/Fe/MgO(001) by a time domain approach. We excite a spin current pulse in Fe by 35 fs laser pulses. The transient spin polarization, which is probed at the Au surface by optical second harmonic generation, changes its sign after a few hundred femtoseconds. This is explained by a competition of ballistic and diffusive propagation considering energy-dependent hot carrier relaxation rates. In addition, we observe the decay of the spin polarization within 1 ps, which is associated with the hot carrier spin relaxation time in Au.

17.
Phys Rev Lett ; 104(3): 036805, 2010 Jan 22.
Article in English | MEDLINE | ID: mdl-20366671

ABSTRACT

We find the scanning tunneling spectra of backgated graphene monolayers to be significantly altered by many-body excitations. Experimental features in the spectra arising from electron-plasmon interactions show carrier density dependence, distinguishing them from density-independent electron-phonon features. Using a straightforward model, we are able to calculate theoretical tunneling spectra that agree well with our data, providing insight into the effects of many-body interactions on the lifetime of graphene quasiparticles.

SELECTION OF CITATIONS
SEARCH DETAIL
...