Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Commun (Camb) ; 59(40): 6004-6007, 2023 May 16.
Article in English | MEDLINE | ID: mdl-37114407

ABSTRACT

Pre-coordination to a transition metal by the terminal donor groups of a tri-dentate ligand is a common strategy to stabilise elusive groups, to achieve unprecedented bond activation and to develop novel modes of metal-ligand-cooperation for catalysis. In the current manuscript, we demonstrate that the oxidative addition of a central E-H-bond after pre-coordination to the metal centre is disfavoured for metals with d10 electron configuration. For exemplary pincer ligands and metals with d10 electron configuration, quantum chemical calculations suggest a second barrier, which is associated with the rearrangement of the saw-horse structure, obtained after oxidative addition, to the expected square planar geometry for the resulting d8 electron configuration. In the case of PBP-type ligands with a central L2BH2-group (L = R3P) the reaction with Pt0 precursors proceeds via an alternative pathway of activation, which involves the backside attack of a nucleophile to the boron atom, which facilitates the nucleophilic attack of the Pt0 centre and formation of a boryl complex (LBH2). As the corresponding reaction with a PtII precursor leads to B-H- instead of B-L-activation and formation of complex 2 with a L2BH donor, our results show that ligand-stabilized borylenes (L2BH) can in principle be converted to boryls (LBH2) via boronium salts (L2BH2+).

2.
J Am Chem Soc ; 142(37): 15722-15728, 2020 Sep 16.
Article in English | MEDLINE | ID: mdl-32830491

ABSTRACT

The utilization of solar energy is restricted by the intermittent nature of solar influx. We present novel noble-metal free complexes that can be photochemically charged in the presence of sacrificial electron donors and remain stable in its charged form for over 14 h. This allows the doubly reduced Cu(I) 4H-imidazolate complex to be stored after photochemical charging and used as a reagent in dark reactions, such as the reduction of methyl viologen or oxygen. Combined UV-vis/EPR spectroelectrochemistry indicates that a two-electron reduction is induced by introducing sacrificial electron donors that facilitate proton-coupled electron transfer. Repeated photochemical reduction and chemical oxidation reveals that the complex retained a charging capacity of 72% after four cycles. We demonstrate a chemical system that can decouple photochemical processes from the day-night cycle, which has been a barrier to realizing utilization of solar energy in photochemical processes on a global scale.

SELECTION OF CITATIONS
SEARCH DETAIL
...