Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Cent Sci ; 7(2): 231-244, 2021 Feb 24.
Article in English | MEDLINE | ID: mdl-33655063

ABSTRACT

The primary task of a battery is to store energy and to power electronic devices. This has hardly changed over the years despite all the progress made in improving their electrochemical performance. In comparison to batteries, electronic devices are continuously equipped with new functions, and they also change their physical appearance, becoming flexible, rollable, stretchable, or maybe transparent or even transient or degradable. Mechanical flexibility makes them attractive for wearable electronics or for electronic paper; transparency is desired for transparent screens or smart windows, and degradability or transient properties have the potential to reduce electronic waste. For fully integrated and self-sufficient systems, these devices have to be powered by batteries with similar physical characteristics. To make the currently used rigid and heavy batteries flexible, transparent, and degradable, the whole battery architecture including active materials, current collectors, electrolyte/separator, and packaging has to be redesigned. This requires a fundamental paradigm change in battery research, moving away from exclusively addressing the electrochemical aspects toward an interdisciplinary approach involving chemists, materials scientists, and engineers. This Outlook provides an overview of the different activities in the field of flexible, transient, and transparent batteries with a focus on the challenges that have to be faced toward the development of such multifunctional energy storage devices.

2.
ACS Appl Mater Interfaces ; 10(23): 19305-19310, 2018 Jun 13.
Article in English | MEDLINE | ID: mdl-29808667

ABSTRACT

In chemical separation, thin membranes exhibit high selectivity, but often require a support at the expense of permeance. Here, we report a pinhole-free polymeric layer synthesized within freestanding carbon nanotube buckypaper through vapor-liquid interfacial polymerization (VLIP). The VLIP process results in thin, smooth and uniform polyamide and imide films. The scaffold reinforces the nanofilm, defines the membrane thickness, and introduces an additional transport mechanism. Our membranes exhibit superior gas selectivity and osmotic semipermeability. Plasticization resistance and high permeance in hydrocarbon separation together with a considerable improvement in water-salt permselectivity highlight their potential as new membrane architecture for chemical separation.

SELECTION OF CITATIONS
SEARCH DETAIL
...