Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Int J Mol Sci ; 25(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38791511

ABSTRACT

G protein-coupled receptors (GPCRs) are relevant targets for health and disease as they regulate various aspects of metabolism, proliferation, differentiation, and immune pathways. They are implicated in several disease areas, including cancer, diabetes, cardiovascular diseases, and mental disorders. It is worth noting that about a third of all marketed drugs target GPCRs, making them prime pharmacological targets for drug discovery. Numerous functional assays have been developed to assess GPCR activity and GPCR signaling in living cells. Here, we review the current literature of genetically encoded cell-based assays to measure GPCR activation and downstream signaling at different hierarchical levels of signaling, from the receptor to transcription, via transducers, effectors, and second messengers. Singleplex assay formats provide one data point per experimental condition. Typical examples are bioluminescence resonance energy transfer (BRET) assays and protease cleavage assays (e.g., Tango or split TEV). By contrast, multiplex assay formats allow for the parallel measurement of multiple receptors and pathways and typically use molecular barcodes as transcriptional reporters in barcoded assays. This enables the efficient identification of desired on-target and on-pathway effects as well as detrimental off-target and off-pathway effects. Multiplex assays are anticipated to accelerate drug discovery for GPCRs as they provide a comprehensive and broad identification of compound effects.


Subject(s)
Receptors, G-Protein-Coupled , Receptors, G-Protein-Coupled/metabolism , Humans , Signal Transduction/drug effects , Drug Development/methods , Drug Discovery/methods , Animals , Bioluminescence Resonance Energy Transfer Techniques/methods , Biological Assay/methods
2.
STAR Protoc ; 5(2): 102987, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38635397

ABSTRACT

The ERBBprofiler assay measures compound effects on ERBB family receptors and key downstream signaling pathways that are implicated in cancer or other complex diseases. Here, we present a protocol for identifying properties of ERBB receptor antagonists using the barcoded ERBBprofiler assay. We describe steps for in-solution transfection, cell treatment, combined processing of samples, amplification and indexing of PCRs, sequencing, and data analysis. This approach allows for the simultaneous assessment of drug effects and cell-type-dependent effects. For complete details on the use and execution of this protocol, please refer to Popovic et al.1.


Subject(s)
ErbB Receptors , Humans , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , ErbB Receptors/genetics , Cell Line, Tumor , Protein Kinase Inhibitors/pharmacology , Signal Transduction/drug effects
3.
Sci Signal ; 17(834): eadj6603, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38687825

ABSTRACT

The localization, number, and function of postsynaptic AMPA-type glutamate receptors (AMPARs) are crucial for synaptic plasticity, a cellular correlate for learning and memory. The Hippo pathway member WWC1 is an important component of AMPAR-containing protein complexes. However, the availability of WWC1 is constrained by its interaction with the Hippo pathway kinases LATS1 and LATS2 (LATS1/2). Here, we explored the biochemical regulation of this interaction and found that it is pharmacologically targetable in vivo. In primary hippocampal neurons, phosphorylation of LATS1/2 by the upstream kinases MST1 and MST2 (MST1/2) enhanced the interaction between WWC1 and LATS1/2, which sequestered WWC1. Pharmacologically inhibiting MST1/2 in male mice and in human brain-derived organoids promoted the dissociation of WWC1 from LATS1/2, leading to an increase in WWC1 in AMPAR-containing complexes. MST1/2 inhibition enhanced synaptic transmission in mouse hippocampal brain slices and improved cognition in healthy male mice and in male mouse models of Alzheimer's disease and aging. Thus, compounds that disrupt the interaction between WWC1 and LATS1/2 might be explored for development as cognitive enhancers.


Subject(s)
Hippocampus , Intracellular Signaling Peptides and Proteins , Neuronal Plasticity , Phosphoproteins , Protein Serine-Threonine Kinases , Receptors, AMPA , Animals , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Male , Humans , Receptors, AMPA/metabolism , Receptors, AMPA/genetics , Mice , Neuronal Plasticity/physiology , Hippocampus/metabolism , Hippo Signaling Pathway , Serine-Threonine Kinase 3 , Signal Transduction , Memory/physiology , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics , Hepatocyte Growth Factor/metabolism , Mice, Inbred C57BL , Alzheimer Disease/metabolism , Phosphorylation , Neurons/metabolism
4.
iScience ; 27(2): 108839, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38303712

ABSTRACT

ERBB receptor tyrosine kinases are involved in development and diseases like cancer, cardiovascular, neurodevelopmental, and mental disorders. Although existing drugs target ERBB receptors, the next generation of drugs requires enhanced selectivity and understanding of physiological pathway responses to improve efficiency and reduce side effects. To address this, we developed a multilevel barcoded reporter profiling assay, termed 'ERBBprofiler', in living cells to monitor the activity of all ERBB targets and key physiological pathways simultaneously. This assay helps differentiate on-target therapeutic effects from off-target and off-pathway side effects of ERBB antagonists. To challenge the assay, eight established ERBB antagonists were profiled. Known effects were confirmed, and previously uncharacterized properties were discovered, such as pyrotinib's preference for ERBB4 over EGFR. Additionally, two lead compounds selectively targeting ERBB4 were profiled, showing promise for clinical trials. Taken together, this multiparametric profiling approach can guide early-stage drug development and lead to improved future therapeutic interventions.

5.
bioRxiv ; 2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38260577

ABSTRACT

Schizophrenia (SCZ) is a genetically heterogenous psychiatric disorder of highly polygenic nature. Correlative evidence from genetic studies indicate that the aggregated effects of distinct genetic risk factor combinations found in each patient converge onto common molecular mechanisms. To prove this on a functional level, we employed a reductionistic cellular model system for polygenic risk by differentiating induced pluripotent stem cells (iPSCs) from 104 individuals with high polygenic risk load and controls into cortical glutamatergic neurons (iNs). Multi-omics profiling identified widespread differences in alternative polyadenylation (APA) in the 3' untranslated region of many synaptic transcripts between iNs from SCZ patients and healthy donors. On the cellular level, 3'APA was associated with a reduction in synaptic density of iNs. Importantly, differential APA was largely conserved between postmortem human prefrontal cortex from SCZ patients and healthy donors, and strongly enriched for transcripts related to synapse biology. 3'APA was highly correlated with SCZ polygenic risk and affected genes were significantly enriched for SCZ associated common genetic variation. Integrative functional genomic analysis identified the RNA binding protein and SCZ GWAS risk gene PTBP2 as a critical trans-acting factor mediating 3'APA of synaptic genes in SCZ subjects. Functional characterization of PTBP2 in iNs confirmed its key role in 3'APA of synaptic transcripts and regulation of synapse density. Jointly, our findings show that the aggregated effects of polygenic risk converge on 3'APA as one common molecular mechanism that underlies synaptic impairments in SCZ.

6.
Cell Signal ; 113: 110917, 2024 01.
Article in English | MEDLINE | ID: mdl-37813295

ABSTRACT

The conserved Hippo signalling pathway plays a crucial role in tumour formation by limiting tissue growth and proliferation. At the core of this pathway are tumour suppressor kinases STK3/4 and LATS1/2, which limit the activity of the oncogene YAP1, the primary downstream effector. Here, we employed a split TEV-based protein-protein interaction screen to assess the physical interactions among 28 key Hippo pathway components and potential upstream modulators. This screen led us to the discovery of TAOK2 as pivotal modulator of Hippo signalling, as it binds to the pathway's core kinases, STK3/4 and LATS1/2, and leads to their phosphorylation. Specifically, our findings revealed that TAOK2 binds to and phosphorylates LATS1, resulting in the reduction of YAP1 phosphorylation and subsequent transcription of oncogenes. Consequently, this decrease led to a decrease in cell proliferation and migration. Interestingly, a correlation was observed between reduced TAOK2 expression and decreased patient survival time in certain types of human cancers, including lung and kidney cancer as well as glioma. Moreover, in cellular models corresponding to these cancer types the downregulation of TAOK2 by CRISPR inhibition led to reduced phosphorylation of LATS1 and increased proliferation rates, supporting TAOK2's role as tumour suppressor gene. By contrast, overexpression of TAOK2 in these cellular models lead to increased phospho-LATS1 but reduced cell proliferation. As TAOK2 is a druggable kinase, targeting TAOK2 could serve as an attractive pharmacological approach to modulate cell growth and potentially offer strategies for combating cancer.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Cell Proliferation , Hippo Signaling Pathway , Protein Serine-Threonine Kinases/metabolism , Serine-Threonine Kinase 3 , Signal Transduction/genetics
7.
Biol Psychiatry Glob Open Sci ; 3(4): 632-641, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37881564

ABSTRACT

Background: Psychiatric and metabolic disorders occur disproportionately often comorbidly, which poses particular hurdles for patients and therapists. However, the mechanisms that promote such comorbidities are largely unknown and therefore cannot yet be therapeutically targeted for the simultaneous treatment of both conditions. Because circadian clocks regulate most physiological processes and their disruption is a risk factor for both psychiatric and metabolic disorders, they may be considered as a potential mechanism for the development of comorbidities and a therapeutic target. In the current study, we investigated the latter assumption in Cry1/2-/- mice, which exhibit substantially disrupted endogenous circadian rhythms and marked metabolic and behavioral deficits. Methods: By targeted virus-induced restoration of circadian rhythms in their suprachiasmatic nucleus, we can restore behavioral as well as several metabolic processes of these animals to near-normal circadian rhythmicity. Results: Importantly, by rescuing suprachiasmatic nucleus rhythms, several of their anxiety-like behavioral as well as diabetes- and energy homeostasis-related deficits were significantly improved. Interestingly, however, this did not affect all deficits typical of Cry1/2-/- mice; for example, restlessness and body weight remained unaffected. Conclusions: Taken together, the results of this study demonstrate, on the one hand, that restoration of disturbed circadian rhythms can be used to simultaneously treat psychiatric and metabolic deficits. On the other hand, the results also allow us to distinguish processes that depend more on local canonical clocks from those that depend more on suprachiasmatic nucleus rhythms.

8.
Cell Rep ; 41(10): 111766, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36476872

ABSTRACT

Learning and memory rely on changes in postsynaptic glutamergic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type receptor (AMPAR) number, spatial organization, and function. The Hippo pathway component WW and C2 domain-containing protein 1 (WWC1) regulates AMPAR surface expression and impacts on memory performance. However, synaptic binding partners of WWC1 and its hierarchical position in AMPAR complexes are largely unclear. Using cell-surface proteomics in hippocampal tissue of Wwc1-deficient mice and by generating a hippocampus-specific interactome, we show that WWC1 is a major regulatory platform in AMPAR signaling networks. Under basal conditions, the Hippo pathway members WWC1 and large tumor-suppressor kinase (LATS) are associated, which might prevent WWC1 effects on synaptic proteins. Reduction of WWC1/LATS binding through a point mutation at WWC1 elevates the abundance of WWC1 in AMPAR complexes and improves hippocampal-dependent learning and memory. Thus, uncoupling of WWC1 from the Hippo pathway to AMPAR-regulatory complexes provides an innovative strategy to enhance synaptic transmission.


Subject(s)
Proteomics , Receptors, AMPA , Animals , Mice
9.
Cells ; 11(2)2022 01 11.
Article in English | MEDLINE | ID: mdl-35053357

ABSTRACT

Oligodendrocytes (OLs) are critical for myelination and are implicated in several brain disorders. Directed differentiation of human-induced OLs (iOLs) from pluripotent stem cells can be achieved by forced expression of different combinations of the transcription factors SOX10 (S), OLIG2 (O), and NKX6.2 (N). Here, we applied quantitative image analysis and single-cell transcriptomics to compare different transcription factor (TF) combinations for their efficacy towards robust OL lineage conversion. Compared with S alone, the combination of SON increases the number of iOLs and generates iOLs with a more complex morphology and higher expression levels of myelin-marker genes. RNA velocity analysis of individual cells reveals that S generates a population of oligodendrocyte-precursor cells (OPCs) that appear to be more immature than those generated by SON and to display distinct molecular properties. Our work highlights that TFs for generating iOPCs or iOLs should be chosen depending on the intended application or research question, and that SON might be beneficial to study more mature iOLs while S might be better suited to investigate iOPC biology.


Subject(s)
Cell Differentiation , Cell Lineage , Oligodendroglia/cytology , Oligodendroglia/metabolism , Transcription Factors/metabolism , Cell Differentiation/genetics , Cell Lineage/genetics , Cells, Cultured , Gene Expression Regulation , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Models, Biological , Neurogenesis/genetics , RNA/metabolism , Transcriptome/genetics
10.
Curr Opin Chem Biol ; 66: 102091, 2022 02.
Article in English | MEDLINE | ID: mdl-34644670

ABSTRACT

The power of next-generation sequencing has stimulated the development of many analysis techniques for transcriptomics and genomics. More recently, the concept of 'molecular barcoding' has broadened the spectrum of sequencing-based applications to dissect different aspects of intracellular and intercellular signaling. In these assay formats, barcode reporters replace standard reporter genes. The virtually infinitive number of expressed barcode sequences allows high levels of multiplexing, hence accelerating experimental progress. Furthermore, reporter barcodes are used to quantitatively monitor a variety of biological events in living cells which has already provided much insight into complex cellular signaling and will further increase our knowledge in the future.


Subject(s)
Genomics , High-Throughput Nucleotide Sequencing , Genomics/methods , High-Throughput Nucleotide Sequencing/methods , Signal Transduction , Transcriptome
11.
Biosensors (Basel) ; 13(1)2022 Dec 29.
Article in English | MEDLINE | ID: mdl-36671883

ABSTRACT

G protein-coupled receptors (GPCRs) are major disease-relevant drug targets; robust monitoring of their activities upon drug treatment is key to drug discovery. The split TEV cell-based assay technique monitors the interaction of an activated GPCR with ß-arrestin-2 through TEV protein fragment complementation using a luminescent signal as the readout. In this work, split TEV GPCR ß-arrestin-2 recruitment assays were optimized to monitor the endogenous ligand-induced activities of six GPCRs (DRD1, DRD2, HTR2A, GCGR, AVPR2, and GLP1R). Each GPCR was tested in four forms; i.e., its wildtype form, a variant with a signal peptide (SP) to facilitate receptor expression, a variant containing the C-terminal tail from the V2 vasopressin receptor (V2R tail) to promote ß-arrestin-2 recruitment, and a variant containing both the SP and V2R tail. These 24 GPCR variants were systematically tested for assay performance in four cell lines (HEK-293, PC12 Tet-Off, U-2 OS, and HeLa). We found that the assay performance differed significantly for each GPCR variant and was dependent on the cell line. We found that V2R improved the DRD2 split TEV assays and that HEK-293 cells were the preferred cell line across the GPCRs tested. When taking these considerations into account, the defined selection of assay modifications and conditions may improve the performance of drug development campaigns that apply the split TEV technique as a screening tool.


Subject(s)
Protein Sorting Signals , Receptors, G-Protein-Coupled , Humans , beta-Arrestins/metabolism , beta-Arrestin 2/metabolism , HEK293 Cells , Receptors, G-Protein-Coupled/metabolism
12.
Trends Pharmacol Sci ; 41(5): 318-335, 2020 05.
Article in English | MEDLINE | ID: mdl-32223968

ABSTRACT

Drug discovery campaigns are hampered by substantial attrition rates largely due to a lack of efficacy and safety reasons associated with candidate drugs. This is true in particular for genetically complex diseases, where insufficient knowledge of the modulatory actions of candidate drugs on targets and entire target pathways further adds to the problem of attrition. To better profile compound actions on targets, potential off-targets, and disease-linked pathways, new innovative technologies need to be developed that can elucidate the complex cellular signaling networks in health and disease. Here, we discuss progress in genetically encoded multiparametric assays and mass spectrometry (MS)-based proteomics, which both represent promising toolkits to profile multifactorial actions of drug candidates in disease-relevant cellular systems to promote drug discovery and personalized medicine.


Subject(s)
Drug Discovery , Proteomics , Humans
13.
Contemp Clin Trials Commun ; 17: 100537, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32072071

ABSTRACT

BACKGROUND: Preclinical studies recently showed that the mineralocorticoid antagonist spironolactone acts also as an antagonist of the NRG1-ERBB4 signaling pathway and improves schizophrenia-like behaviour in Nrg1 transgenic mouse model. As this signaling pathway is critically linked to the pathophysiology of schizophrenia, especially in the context of working-memory dysfunction, spironolactone may be a novel treatment option for patients with schizophrenia targeting cognitive impairments. AIMS: To evaluate whether spironolactone added to an ongoing antipsychotic treatment improves cognitive functioning in schizophrenia. METHODS: The add-on spironolactone for the treatment of schizophrenia trial (SPIRO-TREAT) is a multicenter randomized, placebo-controlled trial with three arms (spironolactone 100 mg, spironolactone 200 mg and placebo). Schizophrenia patients are treated for three weeks and then followed-up for additional nine weeks. As primary outcome, we investigate changes in working memory before and at the end of the intervention phase. We will randomize 90 patients. Eighty-one patients are intended to reach the primary endpoint measure at the end of the three-week intervention period. Secondary endpoints include other measures of cognition, psychopathology, safety measures and biological measures. CONCLUSIONS: SPIRO-TREAT is the first study evaluating the efficacy of the mineralocorticoid receptor antagonist spironolactone to improve cognitive impairments in schizophrenia patients targeting the NRG1-ERBB4 signaling pathway. With SPIRO-TREAT, we intend to investigate a novel treatment option for cognitive impairments in schizophrenia that goes beyond the established concepts of interfering with dopaminergic neurotransmission as key pathway in schizophrenia treatment. CLINICAL TRIAL REGISTRATION: International Clinical Trials Registry Platform: http://apps.who.int/trialsearch/Trial2.aspx?TrialID=EUCTR2014-001968-35-DE.

14.
Cell Mol Life Sci ; 76(19): 3915, 2019 10.
Article in English | MEDLINE | ID: mdl-31377842

ABSTRACT

The article Monitoring activities of receptor tyrosine kinases using a universal adapter in genetically encoded split TEV assays, written by Jan P. Wintgens, Sven P. Wichert, Luksa Popovic, Moritz J. Rossner and Michael C. Wehr, was originally published electronically on the publisher's internet portal (currently SpringerLink) on 8 January 2019 without open access.

15.
Cell Mol Life Sci ; 76(6): 1185-1199, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30623207

ABSTRACT

Receptor tyrosine kinases (RTKs) play key roles in various aspects of cell biology, including cell-to-cell communication, proliferation and differentiation, survival, and tissue homeostasis, and have been implicated in various diseases including cancer and neurodevelopmental disorders. Ligand-activated RTKs recruit adapter proteins through a phosphotyrosine (p-Tyr) motif that is present on the RTK and a p-Tyr-binding domain, like the Src homology 2 (SH2) domain found in adapter proteins. Notably, numerous combinations of RTK/adapter combinations exist, making it challenging to compare receptor activities in standardised assays. In cell-based assays, a regulated adapter recruitment can be investigated using genetically encoded protein-protein interaction detection methods, such as the split TEV biosensor assay. Here, we applied the split TEV technique to robustly monitor the dynamic recruitment of both naturally occurring full-length adapters and artificial adapters, which are formed of clustered SH2 domains. The applicability of this approach was tested for RTKs from various subfamilies including the epidermal growth factor (ERBB) family, the insulin receptor (INSR) family, and the hepatocyte growth factor receptor (HGFR) family. Best signal-to-noise ratios of ligand-activated RTK receptor activation was obtained when clustered SH2 domains derived from GRB2 were used as adapters. The sensitivity and robustness of the RTK recruitment assays were validated in dose-dependent inhibition assays using the ERBB family-selective antagonists lapatinib and WZ4002. The RTK split TEV recruitment assays also qualify for high-throughput screening approaches, suggesting that the artificial adapter may be used as universal adapter in cell-based profiling assays within pharmacological intervention studies.


Subject(s)
Biological Assay/methods , GRB2 Adaptor Protein/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , src Homology Domains , A549 Cells , Acrylamides/metabolism , Acrylamides/pharmacology , Animals , Cell Line, Tumor , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , ErbB Receptors/metabolism , GRB2 Adaptor Protein/genetics , Humans , Lapatinib/metabolism , Lapatinib/pharmacology , PC12 Cells , Protein Binding/drug effects , Pyrimidines/metabolism , Pyrimidines/pharmacology , Rats , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Receptor Protein-Tyrosine Kinases/genetics , Reproducibility of Results
16.
Sci Rep ; 8(1): 17597, 2018 12 04.
Article in English | MEDLINE | ID: mdl-30514868

ABSTRACT

Neuronal signal transduction shapes brain function and malfunction may cause mental disorders. Despite the existence of functional genomics screens for proliferation and toxicity, neuronal signalling has been difficult to address so far. To overcome this limitation, we developed a pooled screening assay which combines barcoded activity reporters with pooled genetic perturbation in a dual-expression adeno-associated virus (AAV) library. With this approach, termed pathScreener, we comprehensively dissect signalling pathways in postmitotic neurons. This overcomes several limitations of lentiviral-based screens. By applying first a barcoded and multiplexed reporter assay, termed cisProfiler, we identified the synaptic-activity responsive element (SARE) as top performance sensor of neuronal activity. Next, we targeted more than 4,400 genes and screened for modulatory effects on SARE activity in primary cortical neurons. We identified with high replicability many known genes involved in glutamatergic synapse-to-nucleus signalling of which a subset was validated in orthogonal assays. Several others have not yet been associated with the regulation of neuronal activity such as the hedgehog signalling members Ptch2 and Ift57. This assay thus enhances the toolbox for analysing regulatory processes during neuronal signalling and may help identifying novel targets for brain disorders.


Subject(s)
Dependovirus/genetics , Glutamic Acid/metabolism , Neurons/metabolism , Signal Transduction/genetics , Synapses , Animals , Genes, Reporter , Genomics , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL , Promoter Regions, Genetic , Synapses/genetics , Synapses/metabolism
17.
Sci Rep ; 8(1): 8137, 2018 05 25.
Article in English | MEDLINE | ID: mdl-29802268

ABSTRACT

G protein-coupled receptors (GPCRs) are the largest class of cell surface receptors and are implicated in the physiological regulation of many biological processes. The high diversity of GPCRs and their physiological functions make them primary targets for therapeutic drugs. For the generation of novel compounds, however, selectivity towards a given target is a critical issue in drug development as structural similarities between members of GPCR subfamilies exist. Therefore, the activities of multiple GPCRs that are both closely and distantly related to assess compound selectivity need to be tested simultaneously. Here, we present a cell-based multiplexed GPCR activity assay, termed GPCRprofiler, which uses a ß-arrestin recruitment strategy and combines split TEV protein-protein interaction and EXT-based barcode technologies. This approach enables simultaneous measurements of receptor activities of multiple GPCR-ligand combinations by applying massively parallelized reporter assays. In proof-of-principle experiments covering 19 different GPCRs, both the specificity of endogenous agonists and the polypharmacological effects of two known antipsychotics on GPCR activities were demonstrated. Technically, normalization of barcode reporters across individual assays allows quantitative pharmacological assays in a parallelized manner. In summary, the GPCRprofiler technique constitutes a flexible and scalable approach, which enables simultaneous profiling of compound actions on multiple receptor activities in living cells.


Subject(s)
Biological Assay/methods , Receptors, G-Protein-Coupled/metabolism , Animals , Antipsychotic Agents/pharmacology , Cell Line, Tumor , PC12 Cells , Rats , Signal Transduction/drug effects
18.
EMBO Mol Med ; 9(10): 1448-1462, 2017 10.
Article in English | MEDLINE | ID: mdl-28743784

ABSTRACT

Enhanced NRG1-ERBB4 signaling is a risk pathway in schizophrenia, and corresponding mouse models display several endophenotypes of the disease. Nonetheless, pathway-directed treatment strategies with clinically applicable compounds have not been identified. Here, we applied a cell-based assay using the split TEV technology to screen a library of clinically applicable compounds to identify modulators of NRG1-ERBB4 signaling for repurposing. We recovered spironolactone, known as antagonist of corticosteroids, as an inhibitor of the ERBB4 receptor and tested it in pharmacological and biochemical assays to assess secondary compound actions. Transgenic mice overexpressing Nrg1 type III display cortical Erbb4 hyperphosphorylation, a condition observed in postmortem brains from schizophrenia patients. Spironolactone treatment reverted hyperphosphorylation of activated Erbb4 in these mice. In behavioral tests, spironolactone treatment of Nrg1 type III transgenic mice ameliorated schizophrenia-relevant behavioral endophenotypes, such as reduced sensorimotor gating, hyperactivity, and impaired working memory. Moreover, spironolactone increases spontaneous inhibitory postsynaptic currents in cortical slices supporting an ERBB4-mediated mode-of-action. Our findings suggest that spironolactone, a clinically safe drug, provides an opportunity for new treatment options for schizophrenia.


Subject(s)
Mineralocorticoid Receptor Antagonists/pharmacology , Neuregulin-1/antagonists & inhibitors , Receptor, ErbB-4/antagonists & inhibitors , Schizophrenia/drug therapy , Spironolactone/pharmacology , Animals , Behavior Rating Scale , Cell Line, Tumor , Coculture Techniques , Disease Models, Animal , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mineralocorticoid Receptor Antagonists/therapeutic use , Phosphorylation/drug effects , Spironolactone/therapeutic use
19.
Methods Mol Biol ; 1596: 219-238, 2017.
Article in English | MEDLINE | ID: mdl-28293890

ABSTRACT

Dynamic protein-protein interactions (PPIs) are fundamental building blocks of cellular signaling and monitoring their regulation promotes the understanding of signaling in health and disease. Genetically encoded split protein biosensor assays, such as the split TEV method, have proved to be highly valuable when studying regulated PPIs in living cells. Split TEV is based on the functional complementation of two previously inactive TEV protease fragments fused to interacting proteins and provides a robust, sensitive and flexible readout to monitor PPIs both at the membrane and in the cytosol. Thus, split TEV can be used to analyze interactomes of receptors, membrane-associated proteins, and cytosolic proteins. In particular, split TEV is useful to assay activities of relevant drug targets, such as receptor tyrosine kinases and G protein-coupled receptors, in compound screens. As split TEV uses genetically encoded readouts, including standard reporters based on fluorescence and luminescence, the technique can also be combined with scalable molecular barcode reporter systems, allowing the integration into multiplexed high-throughput assay approaches. Split TEV can be used in standard heterologous cell lines and primary cell types, including neurons, either in a transient or stably integrated format. When using cell lines, the basic protocol takes 30-96 h to complete, depending on the complexity of the experimental question addressed.


Subject(s)
Endopeptidases/genetics , Animals , Biological Assay/methods , Biosensing Techniques , Cell Line , Cell Line, Tumor , HEK293 Cells , Humans , Membrane Proteins/genetics , PC12 Cells , Protein Interaction Mapping/methods , Rats , Receptors, G-Protein-Coupled/genetics , Signal Transduction/genetics
20.
Drug Discov Today ; 21(3): 415-29, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26610415

ABSTRACT

Cellular signalling is commonly mediated through dynamic protein-protein interactions (PPIs). When pivotal PPIs are deregulated, cellular signalling can be altered; it is therefore attractive to monitor regulated PPIs to understand their role in health and disease. Genetically encoded biosensors that rely on protein fragment complementation have made it feasible to monitor PPIs in living cells precisely and robustly. In particular, split protein biosensors using fluorescent proteins or luciferases are frequently applied. Further, split TEV and split ubiquitin biosensor platforms flexibly allow using readouts of choice, including transcriptional barcode reporters that are amenable to multiplexed high-throughput formats and next-generation sequencing. Combining these technologies will enable assessing drug target activities and cellular response profiles in parallel, thereby opening up new avenues in drug discovery.


Subject(s)
Biosensing Techniques , Drug Discovery , Protein Interaction Mapping , Animals , Biological Assay , Humans , Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...