Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Metab ; 6(4): 340-351, 2017 04.
Article in English | MEDLINE | ID: mdl-28377873

ABSTRACT

OBJECTIVE: In type 2 diabetes (T2D), pancreatic ß cells become progressively dysfunctional, leading to a decline in insulin secretion over time. In this study, we aimed to identify key genes involved in pancreatic beta cell dysfunction by analyzing multiple mouse strains in parallel under metabolic stress. METHODS: Male mice from six commonly used non-diabetic mouse strains were fed a high fat or regular chow diet for three months. Pancreatic islets were extracted and phenotypic measurements were recorded at 2 days, 10 days, 30 days, and 90 days to assess diabetes progression. RNA-Seq was performed on islet tissue at each time-point and integrated with the phenotypic data in a network-based analysis. RESULTS: A module of co-expressed genes was selected for further investigation as it showed the strongest correlation to insulin secretion and oral glucose tolerance phenotypes. One of the predicted network hub genes was Elovl2, encoding Elongase of very long chain fatty acids 2. Elovl2 silencing decreased glucose-stimulated insulin secretion in mouse and human ß cell lines. CONCLUSION: Our results suggest a role for Elovl2 in ensuring normal insulin secretory responses to glucose. Moreover, the large comprehensive dataset and integrative network-based approach provides a new resource to dissect the molecular etiology of ß cell failure under metabolic stress.


Subject(s)
Acetyltransferases/genetics , Diabetes Mellitus, Type 2/genetics , Insulin/metabolism , Acetyltransferases/metabolism , Animals , Cell Line , Diabetes Mellitus, Type 2/metabolism , Fatty Acid Elongases , Gene Regulatory Networks , Glucose/metabolism , Humans , Insulin Secretion , Insulin-Secreting Cells/metabolism , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Phenotype
2.
PLoS One ; 11(1): e0146846, 2016.
Article in English | MEDLINE | ID: mdl-26785252

ABSTRACT

Phenotyping of Gprc6a KO mice has shown that this promiscuous class C G protein coupled receptor is variously involved in regulation of metabolism, inflammation and endocrine function. Such effects are described as mediated by extracellular calcium, L-amino acids, the bone-derived peptide osteocalcin (OCN) and the male hormone testosterone, introducing the concept of a bone-energy-metabolism-reproduction functional crosstalk mediated by GPRC6A. However, whilst the calcium and L-amino acid-sensing properties of GPRC6A are well established, verification of activity of osteocalcin at both human and mouse GPRC6A in vitro has proven somewhat elusive. This study characterises the in vitro pharmacology of mouse GPRC6A in response to its putative ligands in both recombinant and endogenous GPRC6A-expressing cells. Using cell signalling, and glucagon-like peptide (GLP)-1 and insulin release assays, our results confirm that basic L-amino acids act as agonists of the murine GPRC6A receptor in both recombinant cells and immortalised entero-endocrine and pancreatic ß-cells. In contrast, our studies do not support a role for OCN as a direct ligand for mouse GPRC6A, suggesting that the reported in vivo effects of OCN that require GPRC6A may be indirect, rather than via direct activation of the receptor.


Subject(s)
Amino Acids/pharmacology , Osteocalcin/pharmacology , Receptors, G-Protein-Coupled/metabolism , Animals , Glucagon-Like Peptide 1/metabolism , HEK293 Cells , Humans , Insulin/metabolism , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Mice , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...