Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 12(10): e9313, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36248669

ABSTRACT

Disturbances to aquatic habitats are not uniformly distributed within the Great Lakes and acute effects can be strongest in nearshore areas where both landscape and within lake effects can have strong influence. Furthermore, different fish species respond to disturbances in different ways. A means to identify and evaluate locations and extent of disturbances that affect fish is needed throughout the Great Lakes. We used partial Canonical Correspondence Analysis to separate "natural" effects on nearshore assemblages from disturbance effects. Species-specific quadratic models of fish abundance as functions of in-lake disturbance or watershed-derived disturbance were developed separately for each of 35 species and lakewide predictions mapped for Lake Erie. Most responses were unimodal and more species decreased in abundance with increasing watershed disturbance than increased. However, eight species increased in abundance with current in-lake disturbance conditions. Optimum Yellow Perch (Perca flavescens) abundance occurred at in-lake disturbance values less than the gradient mean, but decreased continuously from minimum watershed disturbance to higher values. Bands of optimum in-lake conditions occurred throughout the eastern and western portions of the Lake Erie nearshore zone; some areas were less disturbed than desirable. However, watershed-derived disturbance conditions were generally poor for Yellow Perch throughout the lake. In contrast, optimum Smallmouth Bass (Micropterus dolomieu) abundance occurred at in-lake disturbance values greater than the gradient mean and continuously increased with increasing watershed disturbance. Smallmouth Bass responses to disturbance indicated that most of the nearshore zone was less disturbed than is desirable and were most abundant in areas that the Yellow Perch response indicated were highly disturbed. Mapping counts of species response models that agreed on the disturbance level in each spatial unit of the nearshore zone showed a fine-scale mosaic of areas in which habitat restoration may benefit many or few species. This tool may assist managers in prioritizing conservation and restoration efforts and evaluating environmental conditions that may be improved.

2.
Sci Total Environ ; 586: 879-889, 2017 May 15.
Article in English | MEDLINE | ID: mdl-28233615

ABSTRACT

Despite the prevalence of damming as a global disturbance to river habitats, detailed reach-based assessments of the ecological effects of dams are lacking, particularly across large spatial extents. Using data from nearly 50,000 large dams, we assessed stream network fragmentation and flow alteration by large dams for streams of the conterminous USA. We developed 21 dam metrics characterizing a diversity of dam influences operating at both localized (e.g., distances-to-dams) and landscape scales (e.g., cumulative reservoir storage throughout stream networks) for every stream reach in the study region. We further evaluated how dams have affected stream fish assemblages within large ecoregions using more than 37,000 stream fish samples. Streams have been severely fragmented by large dams, with the number of stream segments increasing by 801% compared to free-flowing streams in the absence of dams and a staggering 79% of stream length is disconnected from their outlet (i.e., oceans and Great Lakes). Flow alteration metrics demonstrate a landscape-scale disturbance of dams, resulting in total upstream reservoir storage volumes exceeding estimated annual discharge volumes of many of the nation's largest rivers. Further, we show large-scale changes in fish assemblages with dams. Species adapted to lentic habitats increase with dams across the conterminous USA, while rheophils, lithophils, and intolerant fishes decrease with dams. Overall, fragmentation and flow alteration by dams have affected fish assemblages as much or more than other anthropogenic stressors, with dam effects generally increasing with stream size. Dam-induced stream fragmentation and flow alteration are critical natural resource issues. This study emphasizes the importance of considering dams as a landscape-scale disturbance to river habitats along with the need to assess differential effects that dams may have on river habitats and the fishes they support. Together, these insights are essential for more effective conservation of stream resources and biotic communities globally.


Subject(s)
Ecosystem , Fishes , Rivers , Water Movements , Animals , Conservation of Natural Resources , Ecology , United States
3.
Environ Manage ; 46(3): 471-83, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20625900

ABSTRACT

Assessment of lake impairment status and identification of threats' type and source is essential for protection of intact, enhancement of modified, and restoration of impaired lakes. For regions in which large numbers of lakes occur, such assessment has usually been done for only small fractions of lakes due to resource and time limitation. This study describes a process for assessing lake impairment status and identifying which human disturbances have the greatest impact on each lake for all lakes that are 2 ha or larger in the state of Michigan using readily available, georeferenced natural and human disturbance databases. In-lake indicators of impairment are available for only a small subset of lakes in Michigan. Using statistical relationships between the in-lake indicators and landscape natural and human-induced measures from the subset lakes, we assessed the likely human impairment condition of lakes for which in-lake indicator data were unavailable using landscape natural and human disturbance measures. Approximately 92% of lakes in Michigan were identified as being least to marginally impacted and about 8% were moderately to heavily impacted by landscape human disturbances. Among lakes that were heavily impacted, more inline lakes (92%) were impacted by human disturbances than disconnected (6%) or headwater lakes (2%). More small lakes were impacted than medium to large lakes. For inline lakes, 90% of the heavily impacted lakes were less than 40 ha, 10% were between 40 and 405 ha, and 1% was greater than 405 ha. For disconnected and headwater lakes, all of the heavily impacted lakes were less than 40 ha. Among the anthropogenic disturbances that contributed the most to lake disturbance index scores, nutrient yields and farm animal density affected the highest number of lakes, agricultural land use affected a moderate number of lakes, and point-source pollution and road measures affected least number of lakes. Our process for assessing lake condition represents a significant advantage over other routinely used methods. It permits the evaluation of lake condition across large regions and yields an overall disturbance index that is a physicochemical and biological indicator weighted sum of multiple disturbance factors. The robustness of our approach can be improved with increased availability of high-resolution disturbance datasets.


Subject(s)
Conservation of Natural Resources/methods , Environmental Monitoring/methods , Fresh Water/chemistry , Human Activities , Agriculture , Animals , Ecosystem , Humans , Livestock , Michigan , Population Density
SELECTION OF CITATIONS
SEARCH DETAIL
...