Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroimage ; 78: 224-32, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23567888

ABSTRACT

The optimization of the targeting of a defined cortical region is a challenge in the current practice of transcranial magnetic stimulation (TMS). The dorsolateral prefrontal cortex (DLPFC) and the primary motor cortex (M1) are among the most usual TMS targets, particularly in its "therapeutic" application. This study describes a practical algorithm to determine the anatomical location of the DLPFC and M1 using a three-dimensional (3D) brain reconstruction provided by a TMS-dedicated navigation system from individual magnetic resonance imaging (MRI) data. The coordinates of the right and left DLPFC and M1 were determined in 50 normal brains (100 hemispheres) by five different investigators using a standardized procedure. Inter-rater reliability was good, with 95% limits of agreement ranging between 7 and 16 mm for the different coordinates. As expressed in the Talairach space and compared with anatomical or imaging data from the literature, the coordinates of the DLPFC defined by our algorithm corresponded to the junction between BA9 and BA46, while M1 coordinates corresponded to the posterior border of hand representation. Finally, we found an influence of gender and possibly of age on some coordinates on both rostrocaudal and dorsoventral axes. Our algorithm only requires a short training and can be used to provide a reliable targeting of DLPFC and M1 between various TMS investigators. This method, based on an image-guided navigation system using individual MRI data, should be helpful to a variety of TMS studies, especially to standardize the procedure of stimulation in multicenter "therapeutic" studies.


Subject(s)
Algorithms , Motor Cortex/anatomy & histology , Prefrontal Cortex/anatomy & histology , Transcranial Magnetic Stimulation/standards , Age Factors , Female , Humans , Magnetic Resonance Imaging , Male , Neuronavigation , Observer Variation , Sex Factors
2.
Neuroimage ; 54(4): 2557-62, 2011 Feb 14.
Article in English | MEDLINE | ID: mdl-21087671

ABSTRACT

INTRODUCTION: Numerous magnetic resonance imaging (MRI) studies have addressed the question of morphological differences of the brain of men and women, reporting conflicting results regarding brain size and the ratio of gray and white matter. In the present study, we used diffusion tensor imaging (DTI) to delineate sex differences of brain white matter. METHODS: We investigated brain microstructure in 25 male and 25 female healthy subjects using a 3T MRI scanner. Whole-head DTI scans were analyzed without a-priori hypothesis using Tract-Based Spatial Statistics (TBSS) calculating maps of fractional anisotropy (FA), radial diffusivity (RD, a potential marker of glial alteration and changes in myelination) and axial diffusivity (AD, a potential marker of axonal changes). RESULTS: DTI revealed regional microstructural differences between the brains of male and female subjects. Those were prominent in the thalamus, corpus callosum and cingulum. Men showed significantly (p<0.0001) higher values of fractional anisotropy and lower radial diffusivity in these areas, suggesting that the observed differences are mainly due to differences in myelination. DISCUSSION: As a novel finding we showed widespread differences in thalamic microstructure that have not been described previously. Additionally, the present study confirmed earlier DTI studies focusing on sexual dimorphism in the corpus callosum and cingulum. All changes appear to be based on differences in myelination. The sex differences in thalamic microstructure call for further studies on the underlying cause and the behavioral correlates of this sexual dimorphism. Future DTI group studies may carefully control for gender to avoid confounding.


Subject(s)
Corpus Callosum/cytology , Diffusion Tensor Imaging , Gyrus Cinguli/cytology , Sex Characteristics , Thalamus/cytology , Adult , Anisotropy , Female , Humans , Image Interpretation, Computer-Assisted , Male
3.
Eur J Nucl Med ; 27(7): 753-65, 2000 Jul.
Article in English | MEDLINE | ID: mdl-10952487

ABSTRACT

Recent studies suggest a higher anti-tumour efficacy of internalizing monoclonal antibodies (MAbs) when labelled with Auger electron emitters, as compared with beta-emitters. The aim of this study was to compare the anti-tumour efficacy and toxicity of the internalizing MAb, CO17-1A, labelled with Auger electron emitters (125I, (111)In) versus conventional beta(-)-emitters (131I, 90Y) in a colon cancer model, and to assess whether the residualizing radiometals may have therapeutic advantages over the conventionally iodinated conjugates. Biodistribution studies of 125I-, (111)In- or 88Y-labelled CO17-1A were performed in nude mice bearing subcutaneous human colon cancer xenografts. For therapy, the mice were injected with either unlabelled or 125I-, 131I-, (111)In- or 90Y-labelled CO17-1A IgG2a, whereas control groups were left untreated or were given a radiolabelled isotype-matched irrelevant antibody. The influence of internalization was assessed by comparing the results with those obtained with an anti-carcinoembryonic antigen (CEA) antibody which does not internalize to a relevant extent. The maximum tolerated activities (MTA) and doses (MTD) of each agent were determined. Myelotoxicity and potential second-organ toxicities, as well as tumour growth, were monitored. Bone marrow transplantation (BMT) was performed in order to enable dose intensification. Radiometals showed significantly better tumour-to-blood ratios than the respective iodinated conjugates. The MTAs of 131I- and 125I-CO17-1A without artificial support were 11.1 MBq (300 microCi) and 111 MBq (3 mCi), respectively; the MTA of the metals was reached at 4 MBq (100 microCi) for 90Y-, and at 85 MBq (2.3 mCi) for (111)In-CO17-1A. Myelotoxicity was dose limiting in all cases. BMT enabled an increase in the MTA to 15 MBq (400 microCi) of 131I-labelled CO17-1A, to 4.4 MBq (120 microCi) of 90Y-labelled CO17-1A, and to 118 MBq (3.2 mCi) of (111)In-labelled CO17-1A, while the MTA of 125I-CO17-1A had not been reached at 185 MBq (5 mCi) with BMT. Whereas no significant therapeutic effects were seen with unlabelled CO17-1A, tumour growth was retarded significantly with its radiolabelled forms. The therapeutic results were significantly (P<0.01) better with both Auger electron emitters (125I and (111)In) than with the beta-emitters, and, in accordance with the biodistribution data, a trend towards better therapeutic results was found with radiometals (more complete remissions) as compared with radioiodine. In contrast, at equitoxic doses, no significant difference was observed in the therapeutic efficacy of 131I- versus 125I-labelled non-internalizing anti-CEA antibody, F023C5. These data suggest that, at equitoxic doses, the therapeutic efficacy of internalizing MAbs labelled with Auger electron emitters, such as 125I or (111)In, is superior to that of internalizing MAbs labelled with conventional beta-emitters. The lower toxicity of Auger electron emitters may be due to the short path length of their low-energy electrons, which can reach the nuclear DNA only if the antibody is internalized (as is the case in antigen-expressing tumour tissue, but not in the stem cells of the red marrow).


Subject(s)
Indium Radioisotopes/therapeutic use , Iodine Radioisotopes/therapeutic use , Radioimmunotherapy , Yttrium Radioisotopes/therapeutic use , Animals , Antibodies, Monoclonal/therapeutic use , Bone Marrow/radiation effects , Bone Marrow Transplantation , Colonic Neoplasms/radiotherapy , Electrons , Female , Humans , Isotope Labeling , Mice , Mice, Nude , Neoplasm Transplantation , Radioimmunotherapy/methods , Tissue Distribution , Transplantation, Heterologous
4.
Cancer Res ; 59(11): 2635-43, 1999 Jun 01.
Article in English | MEDLINE | ID: mdl-10363986

ABSTRACT

Recent studies suggest that radioimmunotherapy (RIT) with high-linear energy transfer (LET) radiation may have therapeutic advantages over conventional low-LET (e.g., beta-) emissions. Furthermore, fragments may be more effective in controlling tumor growth than complete IgG. However, to the best of our knowledge, no investigators have attempted a direct comparison of the therapeutic efficacy and toxicity of a systemic targeted therapeutic strategy, using high-LET alpha versus low-LET beta emitters in vivo. The aim of this study was, therefore, to assess the toxicity and antitumor efficacy of RIT with the alpha emitter 213Bi/213Po, as compared to the beta emitter 90Y, linked to a monovalent Fab' fragment in a human colonic cancer xenograft model in nude mice. Biodistribution studies of 213Bi- or 88Y-labeled benzyl-diethylene-triamine-pentaacetate-conjugated Fab' fragments of the murine monoclonal antibody CO17-1A were performed in nude mice bearing s.c. human colon cancer xenografts. 213Bi was readily obtained from an "in-house" 225Ac/213Bi generator. It decays by beta- and 440-keV gamma emission, with a t(1/2) of 45.6 min, as compared to the ultra-short-lived alpha emitter, 213Po (t(1/2) = 4.2 micros). For therapy, the mice were injected either with 213Bi- or 90Y-labeled CO17-1A Fab', whereas control groups were left untreated or were given a radiolabeled irrelevant control antibody. The maximum tolerated dose (MTD) of each agent was determined. The mice were treated with or without inhibition of the renal accretion of antibody fragments by D-lysine (T. M. Behr et al., Cancer Res., 55: 3825-3834, 1995), bone marrow transplantation, or combinations thereof. Myelotoxicity and potential second-organ toxicities, as well as tumor growth, were monitored at weekly intervals. Additionally, the therapeutic efficacy of both 213Bi- and 90Y-labeled CO17-1A Fab' was compared in a GW-39 model metastatic to the liver of nude mice. In accordance with kidney uptake values of as high as > or = 80% of the injected dose per gram, the kidney was the first dose-limiting organ using both 90Y- and 213Bi-labeled Fab' fragments. Application of D-lysine decreased the renal dose by >3-fold. Accordingly, myelotoxicity became dose limiting with both conjugates. By using lysine protection, the MTD of 90Y-Fab' was 250 microCi and the MTD of 213Bi-Fab' was 700 microCi, corresponding to blood doses of 5-8 Gy. Additional bone marrow transplantation allowed for an increase of the MTD of 90Y-Fab' to 400 microCi and for 213Bi-Fab' to 1100 microCi, respectively. At these very dose levels, no biochemical or histological evidence of renal damage was observed (kidney doses of <35 Gy). At equitoxic dosing, 213Bi-labeled Fab' fragments were significantly more effective than the respective 90Y-labeled conjugates. In the metastatic model, all untreated controls died from rapidly progressing hepatic metastases at 6-8 weeks after tumor inoculation, whereas a histologically confirmed cure was observed in 95% of those animals treated with 700 microCi of 213Bi-Fab' 10 days after model induction, which is in contrast to an only 20% cure rate in mice treated with 250 microCi of 90Y-Fab'. These data show that RIT with alpha emitters may be therapeutically more effective than conventional beta emitters. Surprisingly, maximum tolerated blood doses were, at 5-8 Gy, very similar between high-LET alpha and low-LET beta emitters. Due to its short physical half-life, 213Bi appears to be especially suitable for use in conjunction with fast-clearing fragments.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Bismuth/therapeutic use , Immunoglobulin Fab Fragments/therapeutic use , Linear Energy Transfer , Radioimmunotherapy/methods , Radioisotopes/therapeutic use , Yttrium Radioisotopes/therapeutic use , Animals , Antibodies, Monoclonal/pharmacokinetics , Bismuth/pharmacokinetics , Bone and Bones/metabolism , Colonic Neoplasms/metabolism , Colonic Neoplasms/radiotherapy , Female , Half-Life , Humans , Immunoglobulin Fab Fragments/metabolism , Kidney/metabolism , Mice , Mice, Nude , Radioisotopes/pharmacokinetics , Relative Biological Effectiveness , Tissue Distribution , Tumor Cells, Cultured , Yttrium Radioisotopes/pharmacokinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...