Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 6: 7475, 2015 Jun 25.
Article in English | MEDLINE | ID: mdl-26108283

ABSTRACT

The Seebeck effect describes the generation of an electric potential in a conducting solid exposed to a temperature gradient. In most cases, it is dominated by an energy-dependent electronic density of states at the Fermi level, in line with the prevalent efforts towards superior thermoelectrics through the engineering of electronic structure. Here we demonstrate an alternative source for the Seebeck effect based on charge-carrier relaxation: a charge mobility that changes rapidly with temperature can result in a sizeable addition to the Seebeck coefficient. This new Seebeck source is demonstrated explicitly for Ni-doped CoSb3, where a marked mobility change occurs due to the crossover between two different charge-relaxation regimes. Our findings unveil the origin of pronounced features in the Seebeck coefficient of many other elusive materials characterized by a significant mobility mismatch. When utilized appropriately, this effect can also provide a novel route to the design of improved thermoelectric materials.

2.
J Phys Condens Matter ; 27(10): 105601, 2015 Mar 18.
Article in English | MEDLINE | ID: mdl-25706931

ABSTRACT

The Nernst effect and thermopower of the prototypical Yb-based intermediate valence compound YbAl(3) were investigated. Different to the thermopower whose absolute values are enhanced with increasing temperature and assume a broad maximum at 175 K, the Nernst coefficient of YbAl(3) is enhanced only below T ≈ 75 K. While the two quantities in the heavy-fermion compound CeCu(2)Si(2) were recently found to be related by the anomalous Hall mobility due to the local asymmetric Kondo scattering, this theorem fails when being applied to YbAl(3). Rather, the thermopower of YbAl(3) is well described by a simple narrow-band model. We discuss the reason for this in terms of the intermediate valence nature of YbAl(3) that is conceptually different from the local Kondo physics.

SELECTION OF CITATIONS
SEARCH DETAIL
...