Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Food Sci ; 89(2): 834-850, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38167751

ABSTRACT

Lactic acid fermentation is an effective method for improving the quality of black chokeberry. This study aimed to investigate the influence of lactic acid bacteria on the phenolic profile, antioxidant activities, and volatiles of black chokeberry juice. Initially, 107  cfu/mL of Lactiplantibacillus plantarum, Lactobacillus acidophilus, and Lacticaseibacillus rhamnosus were inoculated into pasteurized black chokeberry juice and fermented for 48 h at 37°C. All these strains enhanced the total phenolic and total flavonoid contents, with La. acidophilus showing the highest total phenolic (1683.64 mg/L) and total flavonoid (659.27 mg/L) contents. Phenolic acids, flavonoids, and anthocyanins were identified using ultrahigh-performance liquid chromatography-tandem mass spectrometry. The prevalent phenolic acid, flavonoid, and anthocyanin in the lactic-acid-fermented black chokeberry juice were cinnamic acid, rutin, and cyanidin-3-O-rutinoside, respectively. Furthermore, following fermentation, the DPPH and ABTS scavenging capacity, as well as the reducing power capacity, increased from 59.98% to 92.70%, 83.06% to 94.95%, and 1.24 to 1.82, respectively. Pearson's correlation analysis revealed that the transformation of phenolic acids, flavonoids, and anthocyanins probably contributed to enhancing antioxidant activities and color conversation in black chokeberry juice. A total of 40 volatiles were detected in the fermented black chokeberry juice by gas chromatography-ion mobility spectrometry. The off-flavor odors, such as 1-penten-3-one and propanal in the black chokeberry juice, were weakened after fermentation. The content of 2-pentanone significantly increased in all fermented juice, imparting an ethereal flavor. Hence, lactic acid fermentation can effectively enhance black chokeberry products' flavor and prebiotic value, offering valuable insights into their production. PRACTICAL APPLICATION: The application of lactic acid bacteria in black chokeberry juice not only enhances its flavor but also improves its health benefits. This study has expanded the range of black chokeberry products and offers a new perspective for the development of the black chokeberry industry.


Subject(s)
Lactobacillales , Photinia , Antioxidants/chemistry , Anthocyanins , Lactic Acid/analysis , Photinia/chemistry , Fermentation , Gas Chromatography-Mass Spectrometry , Phenols/analysis , Flavonoids , Lactobacillus acidophilus/metabolism , Lactobacillales/metabolism
2.
J Sci Food Agric ; 104(5): 2587-2596, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-37984850

ABSTRACT

BACKGROUND: Lactic acid bacteria (LABs) are widely present in foods and affect the flavour of fermented cultures. This study investigates the effects of fermentation with Lactobacillus acidophilus JYLA-16 (La), Lactobacillus plantarum JYLP-375 (Lp), and Lactobacillus rhamnosus JYLR-005 (Lr) on the flavour profile of blueberry juice. RESULTS: This study showed that all LABs strains preferentially used glucose rather than fructose as the carbon source during fermentation. Lactic acid was the main fermentation product, reaching 7.76 g L-1 in La-fermented blueberry juice, 5.86 g L-1 in Lp-fermented blueberry juice, and 6.41 g L-1 in Lr-fermented blueberry juice. These strains extensively metabolized quinic acid, whereas oxalic acid metabolism was almost unaffected. Sixty-four volatile compounds were identified using gas chromatography-ion mobility spectrometry (GC-IMS). All fermented blueberry juices exhibited decreased aldehyde levels. Furthermore, fermentation with La was dominated by alcohols, Lp was dominated by esters, and Lr was dominated by ketones. Linear discriminant analysis of the electronic nose and principal component analysis of the GC-IMS data effectively differentiated between unfermented and fermented blueberry juices. CONCLUSION: This study informs LABs selection for producing desirable flavours in fermented blueberry juice and provides a theoretical framework for flavour detection. © 2023 Society of Chemical Industry.


Subject(s)
Blueberry Plants , Lacticaseibacillus rhamnosus , Lactobacillales , Lactobacillus plantarum , Gas Chromatography-Mass Spectrometry , Food , Lactobacillus plantarum/metabolism , Lactobacillus acidophilus , Fermentation
3.
Front Microbiol ; 14: 1113594, 2023.
Article in English | MEDLINE | ID: mdl-36726371

ABSTRACT

Sweet cherries are popular among consumers, with a recent explosion in sweet cherry production in China. However, the fragility of these fruits poses a challenge for expanding production and transport. With the aim of expanding the product categories of sweet cherries that can bypass these challenges, in this study, we prepared sweet cherry juice fermented by three different lactic acid bacteria (LAB; Lactobacillus acidophilus, Lactobacillus plantarum, and Lactobacillus rhamnosus GG), and evaluated the growth, physiochemical, and aroma characteristics. All three strains exhibited excellent growth potential in the sweet cherry juice; however, Lactobacillus acidophilus and Lactobacillus plantarum demonstrated more robust acid production capacity and higher microbial viability than Lactobacillus rhamnosus GG. Lactic acid was the primary fermentation product, and malic acid was significantly metabolized by LAB, indicating a transition in microbial metabolism from using carbohydrates to organic acids. The aroma profile was identified through integrated analysis of electronic nose (E-nose) and headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS) data. A total of 50 volatile compounds characterized the aromatic profiles of the fermented juices by HS-GC-IMS. The flavor of sweet cherry juice changed after LAB fermentation and the fruity odor decreased overall. Lactobacillus acidophilus and Lactobacillus plantarum significantly increased 2-heptanone, ethyl acetate, and acetone contents, bringing about a creamy and rummy-like favor, whereas Lactobacillus rhamnosus GG significantly increased 2-heptanone, 3-hydroxybutan-2-one, and 2-pentanone contents, generating cheesy and buttery-like odors. Principal component analysis of GC-IMS data and linear discriminant analysis of E-nose results could effectively differentiate non-fermented sweet cherry juice and the sweet cherry juice separately inoculated with different LAB strains. Furthermore, there was a high correlation between the E-nose and GC-IMS results, providing a theoretical basis to identify different sweet cherry juice formulations and appropriate starter culture selection for fermentation. This study enables more extensive utilization of sweet cherry in the food industry and helps to improve the flavor of sweet cherry products.

4.
Stat Med ; 27(18): 3656-73, 2008 Aug 15.
Article in English | MEDLINE | ID: mdl-18266288

ABSTRACT

For clustered count data with excess zeros where the observations are either over-dispersed or under-dispersed, the zero-inflated generalized Poisson mixed (ZIGPM) regression model may be appropriate, in which the baseline discrete distribution is a generalized Poisson distribution, which is a natural extension of standard Poisson distribution. Motivated by one data set drawn from a pharmaceutical study, influence diagnostics for ZIGPM models based on case-deletion and local influence analysis are developed in this work. The one-step approximations of the estimates under case-deletion model and some case-deletion measures are given. Meanwhile, local influence measures are obtained under various perturbations of the observed data or model assumptions. Results from a pharmaceutical study illustrate the usefulness of the diagnostic statistics.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Poisson Distribution , Regression Analysis , Data Interpretation, Statistical , Drug Therapy/statistics & numerical data
SELECTION OF CITATIONS
SEARCH DETAIL
...