Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 15(40): 47350-47358, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37769291

ABSTRACT

Retroreflective structural colors can usually be achieved based on interference combined with a total internal reflection mechanism or diffraction of a monolayer hexagonal two-dimensional (2D) colloidal array. Here, a novel retroreflective structural color was generated based on a hexagonal-parallelogram lattice transformation by stretching 3D photonic crystals with nonclosely packed long-range order. Compared to previous retroreflective colors, this new retroreflective color exhibits two unique off/on color switches: (1) a strain-dependent off/on color switch along the stretching direction and (2) a sample horizontal rotation angle-dependent off/on color switch under the fixed strain. These strain-responsive retroreflective colors are ideal candidates for visually sensing kinesio tapes' strain in practical applications and anticounterfeiting. This work reveals a new structural color regulation mechanism and will advance potential applications in anticounterfeiting, sensing, displays, etc.

2.
Mater Horiz ; 10(10): 3895-3928, 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37448235

ABSTRACT

Stimulus-responsive photonic crystals (PCs) possessing unconventional nonclosely packed structures have received growing attention due to their unique capability of mimicking the active structural colors of natural organisms (for example, chameleons' mechanochromic properties). However, there is rarely any systematic review regarding the progress of nonclose-packed photonic crystals (NPCs), involving their fabrication, working mechanisms, and applications. Herein, a comprehensive review of the fundamental principles and practical fabrication strategies of one/two/three-dimensional NPCs is summarized from the perspective of designing nonclose-packed structures. Subsequently, responsive NPCs with exciting functions and working mechanisms are sorted and delineated according to their diverse responses to physical (force, temperature, magnetic, and electric fields), chemical (ions, pH, vapors, and solvents), and biological (glucose, organophosphate, creatinine, and bacteria) stimuli. We then systematically introduced and discussed the applications of NPCs in sensors, printing, anticounterfeiting, display, optical devices, etc. Finally, the current challenges and development prospects for NPCs are presented. This review not only concludes the design principle for NPCs but also provides a significant basis for the exploration of next-generation NPCs.

3.
J Colloid Interface Sci ; 650(Pt A): 313-321, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37413865

ABSTRACT

Colloidal photonic crystals (PCs) feature face-centered cubic (FCC) lattices since spherical particles are usually used as building blocks; however, constructing structural colors originating from PCs with non-FCC lattices is still a big challenge due to the difficulty in preparing non-spherical particles with tunable morphologies, sizes, uniformity, and surface properties and assembling them into ordered structures. Here, uniform, positively charged, and hollow mesoporous cubic silica particles (hmc-SiO2) with tunable sizes and shell thicknesses prepared by a template approach are used to self-assemble into PCs with rhombohedral lattice. The reflection wavelengths and structural colors of the PCs can be controlled by altering the sizes or the shell thicknesses of the hmc-SiO2. Additionally, photoluminescent PCs have been fabricated by taking the advantage of the click chemistry between amino silane and isothiocyanate of a commercial dye. The PC pattern achieved by a hand-writing way with the solution of the photoluminescent hmc-SiO2 instantly and reversibly shows the structural color under visible light but a different photoluminescent color under UV illumination, which is useful for anticounterfeiting and information encryption. The non-FCC structured and photoluminescent PCs will upgrade the basic understanding of the structural colors and facilitate their applications in optical devices, anti-counterfeiting, and so forth.

4.
Adv Sci (Weinh) ; 10(24): e2302240, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37330657

ABSTRACT

Inspired by the brilliant and tunable structural colors based on the large refractive index contrast (Δn) and non-close-packing structures of chameleon skins, ZnS-silica photonic crystals (PCs) with highly saturated and adjustable colors are fabricated. Due to the large Δn and non-close-packing structure, ZnS-silica PCs show 1) intense reflectance (maximal: 90%), wide photonic bandgaps, and large peak areas, 2.6-7.6, 1.6, and 4.0 times higher than those of silica PCs, respectively; 2) tunable colors by simply adjusting the volume fraction of particles with the same size, more convenient than the conventional way of altering particle sizes; and 3) a relatively low threshold of PC's thickness (57 µm) possessing maximal reflectance compared to that (>200 µm) of the silica PCs. Benefiting from the core-shell structure of the particles, various derived photonic superstructures are fabricated by co-assembling ZnS-silica and silica particles into PCs or by selectively etching silica or ZnS of ZnS-silica/silica and ZnS-silica PCs. A new information encryption technique is developed based on the unique reversible "disorder-order" switch of water-responsive photonic superstructures. Additionally, ZnS-silica PCs are ideal candidates for enhancing fluorescence (approximately tenfold), approximately six times higher than that of silica PC.

5.
J Colloid Interface Sci ; 634: 314-322, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36535167

ABSTRACT

It is a great challenge to detect hydrofluoric acid (HF) with high precision, good selectivity, and visual readouts characteristics. Herein, a new photonic crystal (PC) hydrogel HF sensor based on the "selective etching-induced swelling" mechanism has been developed. This HF sensor consisting of silica/water/hydroxyethyl acrylate and non-closely packed structures was fabricated through simple non-close-assembling, photopolymerization, and water swelling processes. Silica slightly etched by HF induces the swelling of PC hydrogel, leading to the variation of reflection wavelength and structural colors, thereby realizing visually and spectrally sensing HF (0-10 mM). The unique structure and compositions of PC hydrogel are the keys to the high sensing precision, outstanding selectivity, and low detection limit (0.1 mM). Furthermore, the sensor possesses tailorable, portable, easy-to-operation, and low-cost (<0.01 $/sensor) advantages. This work provides an efficient and convenient tool for sensing and recognizing HF in the aqueous solution for practical applications and upgrades the basic understanding of the photonic sensing mechanism.


Subject(s)
Hydrofluoric Acid , Hydrogels , Hydrogels/chemistry , Photons
6.
ACS Appl Mater Interfaces ; 14(9): 11672-11680, 2022 Mar 09.
Article in English | MEDLINE | ID: mdl-35226808

ABSTRACT

The skins of chameleons have attracted growing interest because they have sensitive mechano-chromic properties and bright colors due to the large surface-to-surface distances (Ds-s) between neighboring particles and contrast of the refractive index (Δn), respectively. Inspired by these, artificial mechano-chromic photonic skins (MPSs) mimicking those of chameleons were fabricated by the large Δn and Ds-s. The fabrication is considerably simple and efficient based on the self-assembly strategy using commercial chemicals and materials. The reflectance of MPSs depends on the value of Δn, which can be greatly increased to 70% with a Δn of 0.035, leading to their brilliant colors. Because of the large Ds-s, the MPSs possess outstanding mechano-chromic performances, including a large maximal (Δλ = 205 nm) and effective (Δλe = 184 nm) tuning range of the reflection wavelength, high sensitivity (368), fast responsiveness (2.2 nm/ms), good stabilities (>1 year), and reversibility (>100 times). Based on these advantages, MPSs have been used for self-reporting the strain of earthworms by outputting diverse colors during the peristaltic process, indicating the great potential of the MPSs as visual sensors and optical coatings.


Subject(s)
Biomimetics/methods , Biosensing Techniques/methods , Lizards , Oligochaeta/classification , Optics and Photonics/methods , Skin/chemistry , Animals , Color , Light , Mechanical Phenomena , Nanoparticles , Silicon Dioxide/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...