Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 17(12): 11607-11615, 2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37288740

ABSTRACT

Photochemical methods are effective for controllable synthesis of silver nanoparticles with specific sizes and shapes. Whether they are capable of fabricating Ag nanoclusters (NCs) with atomic precision is yet to be proved. In this work, we synthesize an atomically precise Ag NC, [Ag25(4-MePhC≡C)20(Dpppe)3](SbF6)3 (Ag25), via a process mediated by visible light. Its total structure is determined by X-ray crystallography. The investigation of the mechanism reveals that the formation of Ag25 is triggered by a photoinduced electron-transfer (PET) process. An electron of certain amines is excited by light with wavelength shorter than 455 nm and transferred to Ag+. The amine is oxidized to the corresponding amine N-oxide. Such a PET process is supported by experimental and density functional theory studies. To expand the application scope of the photochemical method, another three NCs, [Ag19(4-tBuPhC≡C)14(Dpppe)3](SbF6)3 (Ag19), [Ag32(4-tBuPhC≡C)22(Dppp)4](SbF6)3 (Ag32), and bimetallic [Ag22Au3(4-tBuPhC≡C)20(Dpppe)3](SbF6)3 (Ag22Au3), are produced by replacing certain ingredients. Furthermore, since the formation of Ag19 can be regarded as a photochromatic process, a facile amine visual detection method is also presented based on this mechanism.

2.
J Am Chem Soc ; 139(36): 12346-12349, 2017 09 13.
Article in English | MEDLINE | ID: mdl-28837326

ABSTRACT

Determining the total structure of metal nanoparticles is vital to understand their properties. In this work, the first all-alkynyl-protected Ag nanocluster, Ag74(C≡CPh)44, was synthesized and structurally characterized by single crystal diffraction. Ag atoms are arranged in a Ag4@Ag22@Ag48 three shell structure and all 44 phenylethynyl ligands coordinated with Ag in a µ3 mode. In spite of being absent in nanocluster, 31P NMR study reveals that bidentate phosphine first reacts with Ag(I) to form a dinuclear complex, from which Ag atoms are then released to phenylethynyl ligands. This phosphine mediated strategy may find general application in synthesis of alkynyl-protected Ag nanoclusters.

3.
Colloids Surf B Biointerfaces ; 88(1): 310-4, 2011 Nov 01.
Article in English | MEDLINE | ID: mdl-21798724

ABSTRACT

Graphene/p-aminobenzoic acid composite film modified glassy carbon electrode (Gr/p-ABA/GCE) was first employed for the sensitive determination of dopamine (DA). The electrochemical behavior of DA at the modified electrode was investigated by cyclic voltametry (CV), differential pulse voltametry (DPV) and amperometric curve. The oxidation peak currents of DA increased dramatically at Gr/p-ABA/GCE. The modified electrode was used to electrochemically detect dopamine (DA) in the presence of ascorbic acid (AA). The Gr/p-ABA composite film showed excellent electrocatalytic activity for the oxidation of DA in phosphate buffer solution (pH 6.5). The peak separation between DA and AA was large up to 220 mV. Using DPV technique, the calibration curve for DA determination was obtained in the range of 0.05-10 µM. The detection limit for DA was 20 nM. AA did not interfere with the determination of DA because of the very distinct attractive interaction between DA cations and the negatively Gr/p-ABA composite film. The proposed method exhibited good stability and reproducibility.


Subject(s)
4-Aminobenzoic Acid/chemistry , Ascorbic Acid/chemistry , Biosensing Techniques/methods , Dopamine/chemistry , Graphite/chemistry , Polymers/chemistry , Electrochemistry , Hydrogen-Ion Concentration
4.
Article in English | MEDLINE | ID: mdl-21684195

ABSTRACT

An efficient solid phase extraction-spectrofluorimetric method using graphene as adsorbent was developed to sensitively determine glutathione (GSH) in biological samples. Fluorescent probe N-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-yl)methyl)iodoacetamide (BODIPY Fl-C1-IA) was applied for the derivatization of GSH. The procedure was based on BODIPY Fl-C1-IA selective reaction with GSH to form highly fluorescent product BODIPY Fl-C1-IA-GSH, its extraction to the graphene-packed SPE cartridge and spectrofluorimetric determination. Some factors affecting the extraction efficiency, such as the type of the eluent and its volume, sample pH, extraction time, and sample volume were optimized. Comparative studies were also performed between graphene and other adsorbents including C18 silica, graphitic carbon, and multi-walled carbon nanotubes for the extraction of analyte. The calibration graph using the pretreatment system for GSH was linear over the range of 0.5-200 nM. The limit of detection was 0.01 nM (signal-to-noise ratio=3). Relative standard deviation for six replicate determinations of GSH at 80 nM concentration level was lower than 5.0%. The developed method was applied to the determination of GSH in human plasma with recoveries of 92-108%. This work revealed the great potentials of graphene as an excellent sorbent material in the analysis of biological samples.


Subject(s)
Glutathione/analysis , Glutathione/blood , Glutathione/isolation & purification , Graphite/chemistry , Nanotubes, Carbon , Plasma/chemistry , Solid Phase Extraction , Spectrometry, Fluorescence , Graphite/metabolism , Humans , Silicon Dioxide/chemistry , Water/chemistry
5.
J Chromatogr B Analyt Technol Biomed Life Sci ; 879(9-10): 579-84, 2011 Mar 15.
Article in English | MEDLINE | ID: mdl-21316314

ABSTRACT

A simple and efficient method, ionic liquid-based ultrasound-assisted liquid-liquid microextraction, has been developed for the determination of three biogenic amines including octopamine (OCT), tyramine (TYR) and phenethylamine (PHE). Fluorescence probe 2,6-dimethyl-4-quinolinecarboxylic acid N-hydroxysuccinimide ester was applied for derivatization of biogenic amines and high-performance liquid chromatography coupled with fluorescence detection was used for the determination of the derivatives. The factors affecting the extraction efficiency, such as the type and volume of ionic liquid, ultrasonication time and centrifugation time have been investigated in detail. Under the optimum conditions, linearity of the method was observed in the range of 0.5-50 µgmL(-1) for OCT and TYR, and 0.025-2.5 µgmL(-1) for PHE, respectively, with correlation coefficients (γ)>0.996. The limits of detection ranged from 0.25-50 ngmL(-1) (S/N=3). The spiked recoveries of three target compounds in beer samples were in the range of 90.2-114%. As a result, this method has been successfully applied for the sensitive determination of OCT, TYR and PHE in beer samples.


Subject(s)
Beer/analysis , Biogenic Amines/analysis , Chemical Fractionation/methods , Acetonitriles , Centrifugation , Chromatography, High Pressure Liquid , Food Analysis , Hydrogen-Ion Concentration , Ionic Liquids , Octopamine/analysis , Phenethylamines/analysis , Sonication , Spectrometry, Fluorescence , Temperature , Tyramine/analysis
6.
Article in English | MEDLINE | ID: mdl-20047857

ABSTRACT

Human serum albumin (HSA) was the most abundant protein in human plasma and has significant physiological function. In Tris-HCl buffer solution (pH 7.4), water-soluble semiconductor CdSe quantum dots (QDs) reacted with HSA and the products resulted in a great enhancement of the intensity of resonance Rayleigh scattering (RRS) and second-order scattering (SOS). Based on this, a new method was developed to investigate the interactions between QDs and HSA. The parameters with regard to determination were optimized, and the reaction mechanism was discussed. Under optimal conditions, the increments of scattering intensity (DeltaI) were directly proportional to the concentrations of HSA in the range of 0.4-48.0 micromol L(-1). The detection limits were 0.10 micromol L(-1) for RRS method and 0.25 micromol L(-1) for SOS method. The proposed method was sensitive, simple and rapid. It has been successfully applied to the determination of HSA in human urine samples. Analytical results obtained with this novel assay were satisfactory.


Subject(s)
Cadmium/chemistry , Quantum Dots , Selenium/chemistry , Serum Albumin/chemistry , Humans , Limit of Detection , Spectrometry, Fluorescence/methods , Spectrophotometry, Ultraviolet/methods
7.
J Chromatogr A ; 1216(38): 6636-41, 2009 Sep 18.
Article in English | MEDLINE | ID: mdl-19674751

ABSTRACT

Ultrasound-assisted dispersive liquid-liquid microextraction coupled with high-performance liquid chromatography-fluorescence detection was used for the extraction and determination of three biogenic amines including octopamine, tyramine and phenethylamine in rice wine samples. Fluorescence probe 2,6-dimethyl-4-quinolinecarboxylic acid N-hydroxysuccinimide ester was applied for derivatization of biogenic amines. Acetonitrile and 1-octanol were used as disperser solvent and extraction solvent, respectively. Extraction conditions including the type of extraction solvent, the volume of extraction solvent, ultrasonication time and centrifuging time were optimized. After extraction and centrifuging, analyte was injected rapidly into high-performance liquid chromatography and then detected with fluorescence. The calibration graph of the proposed method was linear in the range of 5-500 microg mL(-1) (octopamine and tyramine) and 0.025-2.5 microg mL(-1) (phenethylamine). The relative standard deviations were 2.4-3.2% (n=6) and the limits of detection were in the range of 0.02-5 ng mL(-1). The method was applied to analyze the rice wine samples and spiked recoveries in the range of 95.42-104.56% were obtained. The results showed that ultrasound-assisted dispersive liquid-liquid microextraction was a very simple, rapid, sensitive and efficient analytical method for the determination of trace amount of biogenic amines.


Subject(s)
Biogenic Amines/analysis , Chemical Fractionation/methods , Chromatography, High Pressure Liquid/methods , Oryza/chemistry , Wine/analysis , Chemical Fractionation/instrumentation , Chromatography, High Pressure Liquid/instrumentation , Fluorescence , Solvents/chemistry , Ultrasonics
SELECTION OF CITATIONS
SEARCH DETAIL
...