Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Oncol ; 14: 1372424, 2024.
Article in English | MEDLINE | ID: mdl-38884079

ABSTRACT

Introduction: Young cervical cancer patients who require ovarian transposition usually have their ovaries moved away from the pelvic radiotherapy (RT) field before radiotherapy. The dose of ovaries during radiotherapy is closely related to the location of the ovaries. To protect ovarian function and avoid ovarian dose exceeding the limits, a safe location of transposed ovary must be determined prior to surgery. Methods: For this purpose, we input the patient's preoperative CT into a neural network model to predict the dose distribution. Surgeons were able to quickly locate low-dose regions based on the dose distribution before surgery, thus determining the safe location of the transposed ovary. In this work, we proposed a new progressive refinement transformer model PRT-Net that can generate dose prediction at multiple scale resolutions in one forward propagation, and refine the dose prediction using prediction details from low to high resolution based on a deep supervision strategy. A multi-loss function fusion algorithm was also built to fit the prediction results under different loss dimensions. The clinical feasibility of the method was verified through an actual cases. Results and discussion: Therefore, using PRT-Net to predict the dose distribution by preoperative CT in cervical cancer patients can assist clinicians to perform ovarian transposition surgery and prevent patients' ovaries from exceeding the prescribed dose limit in postoperative radiotherapy.

2.
Front Oncol ; 13: 1177788, 2023.
Article in English | MEDLINE | ID: mdl-37927463

ABSTRACT

Introduction: Radiation therapy is a common treatment option for Head and Neck Cancer (HNC), where the accurate segmentation of Head and Neck (HN) Organs-AtRisks (OARs) is critical for effective treatment planning. Manual labeling of HN OARs is time-consuming and subjective. Therefore, deep learning segmentation methods have been widely used. However, it is still a challenging task for HN OARs segmentation due to some small-sized OARs such as optic chiasm and optic nerve. Methods: To address this challenge, we propose a parallel network architecture called PCG-Net, which incorporates both convolutional neural networks (CNN) and a Gate-Axial-Transformer (GAT) to effectively capture local information and global context. Additionally, we employ a cascade graph module (CGM) to enhance feature fusion through message-passing functions and information aggregation strategies. We conducted extensive experiments to evaluate the effectiveness of PCG-Net and its robustness in three different downstream tasks. Results: The results show that PCG-Net outperforms other methods, improves the accuracy of HN OARs segmentation, which can potentially improve treatment planning for HNC patients. Discussion: In summary, the PCG-Net model effectively establishes the dependency between local information and global context and employs CGM to enhance feature fusion for accurate segment HN OARs. The results demonstrate the superiority of PCGNet over other methods, making it a promising approach for HNC treatment planning.

3.
Technol Cancer Res Treat ; 22: 15330338231157936, 2023.
Article in English | MEDLINE | ID: mdl-36788411

ABSTRACT

Purpose/Objective(s): With the development of deep learning, more convolutional neural networks (CNNs) are being introduced in automatic segmentation to reduce oncologists' labor requirement. However, it is still challenging for oncologists to spend considerable time evaluating the quality of the contours generated by the CNNs. Besides, all the evaluation criteria, such as Dice Similarity Coefficient (DSC), need a gold standard to assess the quality of the contours. To address these problems, we propose an automatic quality assurance (QA) method using isotropic and anisotropic methods to automatically analyze contour quality without a gold standard. Materials/Methods: We used 196 individuals with 18 different head-and-neck organs-at-risk. The overall process has the following 4 main steps. (1) Use CNN segmentation network to generate a series of contours, then use these contours as organ masks to erode and dilate to generate inner/outer shells for each 2D slice. (2) Thirty-eight radiomics features were extracted from these 2 shells, using the inner/outer shells' radiomics features ratios and DSCs as the input for 12 machine learning models. (3) Using the DSC threshold adaptively classified the passing/un-passing slices. (4) Through 2 different threshold analysis methods quantitatively evaluated the un-passing slices and obtained a series of location information of poor contours. Parts 1-3 were isotropic experiments, and part 4 was the anisotropic method. Result: From the isotropic experiments, almost all the predicted values were close to the labels. Through the anisotropic method, we obtained the contours' location information by assessing the thresholds of the peak-to-peak and area-to-area ratios. Conclusion: The proposed automatic segmentation QA method could predict the segmentation quality qualitatively. Moreover, the method can analyze the location information for un-passing slices.


Subject(s)
Image Processing, Computer-Assisted , Tomography, X-Ray Computed , Humans , Image Processing, Computer-Assisted/methods , Neural Networks, Computer , Neck , Machine Learning
SELECTION OF CITATIONS
SEARCH DETAIL
...