Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 8(1): 13776, 2018 09 13.
Article in English | MEDLINE | ID: mdl-30213990

ABSTRACT

The nickel-titanium alloy (57Ni-43Ti in wt%) was atomized by the plasma rotating electrode process (PREP). The PREP parameters such as plasma arc current, rotating electrode speed with corresponding PREP powder size range in weight percentage analysis, powder morphology and biocapability of cells were studied by scanning electron microscopies, Inductively Coupled Plasma and X-ray diffraction techniques. From the electrode of the produced powders, the composition has no obviously changes. Weight percentage up to 31.8% of the range under 300 µm while the rotation electrode speed increase to 12k rpm. Spherical and flat with smooth surface were observed in different size range. Brittle phase was not observed of XRD data. The nitinol powder has high biocapability with cells showed no cytotoxicity and well cell adhesion in the in vivo assay.


Subject(s)
Alloys/chemistry , Nickel/chemistry , Powders/chemical synthesis , Titanium/chemistry , Biomedical Engineering , Cell Adhesion , Cell Line , Electrodes , Humans , Microscopy, Electron, Scanning , Particle Size , X-Ray Diffraction
2.
Sci Technol Adv Mater ; 18(1): 611-619, 2017.
Article in English | MEDLINE | ID: mdl-28970869

ABSTRACT

Hot deformation of Nd-Fe-B magnets has been studied for more than three decades. With a good combination of forming processing parameters, the remanence and (BH)max values of Nd-Fe-B magnets could be greatly increased due to the formation of anisotropic microstructures during hot deformation. In this work, a methodology is proposed for visualizing the material flow in hot-deformed Nd-Fe-B magnets via finite element simulation. Material flow in hot-deformed Nd-Fe-B magnets could be predicted by simulation, which fitted with experimental results. By utilizing this methodology, the correlation between strain distribution and magnetic properties enhancement could be better understood.

SELECTION OF CITATIONS
SEARCH DETAIL
...