Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Mol Plant ; 17(6): 867-883, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38678365

ABSTRACT

Given the escalating impact of climate change on agriculture and food security, gaining insights into the evolutionary dynamics of climatic adaptation and uncovering climate-adapted variation can empower the breeding of climate-resilient crops to face future climate change. Alfalfa (Medicago sativa subsp. sativa), the queen of forages, shows remarkable adaptability across diverse global environments, making it an excellent model for investigating species responses to climate change. In this study, we performed population genomic analyses using genome resequencing data from 702 accessions of 24 Medicago species to unravel alfalfa's climatic adaptation and genetic susceptibility to future climate change. We found that interspecific genetic exchange has contributed to the gene pool of alfalfa, particularly enriching defense and stress-response genes. Intersubspecific introgression between M. sativa subsp. falcata (subsp. falcata) and alfalfa not only aids alfalfa's climatic adaptation but also introduces genetic burden. A total of 1671 genes were associated with climatic adaptation, and 5.7% of them were introgressions from subsp. falcata. By integrating climate-associated variants and climate data, we identified populations that are vulnerable to future climate change, particularly in higher latitudes of the Northern Hemisphere. These findings serve as a clarion call for targeted conservation initiatives and breeding efforts. We also identified pre-adaptive populations that demonstrate heightened resilience to climate fluctuations, illuminating a pathway for future breeding strategies. Collectively, this study enhances our understanding about the local adaptation mechanisms of alfalfa and facilitates the breeding of climate-resilient alfalfa cultivars, contributing to effective agricultural strategies for facing future climate change.


Subject(s)
Climate Change , Medicago sativa , Medicago sativa/genetics , Medicago sativa/physiology , Adaptation, Physiological/genetics , Genomics , Genome, Plant
2.
Plant Physiol Biochem ; 209: 108542, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38531119

ABSTRACT

High salinity is one of the detrimental environmental factors restricting plant growth and crop production throughout the world. This study demonstrated that the GARP family transcription factor MtHHO3 is involved in response to salt stress and abscisic acid (ABA) signaling in Medicago truncatula. The transcription of MtHHO3 was repressed by salt, osmotic stress, and ABA treatment. The seed germination assay showed that, overexpression of MtHHO3 in Arabidopsis thaliana caused hypersensitivity to salt and osmotic stress, but increased resistance to ABA inhibition. Overexpression of MtHHO3 in M. truncatula resulted in decreased tolerance of salinity, while loss-of-function mutants mthho3-1 and mthho3-2 were more resistant to salt stress compared with wild-type plants. qRT-PCR analyses showed that MtHHO3 downregulated the expression of genes in stress and ABA responsive pathways. We further demonstrated that MtHHO3 repressed the transcription of the pathogenesis-related gene MtPR2 by binding to its promoter. Overall, these results indicate that MtHHO3 negatively regulates salt stress response in plants and deepen our understanding of the role of the GARP subfamily transcription factors in modulating salt stress and ABA signaling.


Subject(s)
Arabidopsis , Medicago truncatula , Transcription Factors/genetics , Transcription Factors/metabolism , Medicago truncatula/genetics , Medicago truncatula/metabolism , Abscisic Acid/pharmacology , Abscisic Acid/metabolism , Salt Tolerance , Plants, Genetically Modified/genetics , Gene Expression Regulation, Plant , Arabidopsis/metabolism , Stress, Physiological/genetics , Germination/genetics
3.
Sci Rep ; 13(1): 14247, 2023 08 30.
Article in English | MEDLINE | ID: mdl-37648696

ABSTRACT

The minority people panmicrobial community database (MPPCD website: http://mppmcdb.cloudna.cn/ ) is the first microbe-disease association database of Chinese ethnic minorities. To research the relationships between intestinal microbes and diseases/health in the ethnic minorities, we collected the microbes of the Han people for comparison. Based on the data, such as age, among the different ethnic groups of the different regions of Sichuan Province, MPPCD not only provided the gut microbial composition but also presented the relative abundance value at the phylum, class, order, family and genus levels in different groups. In addition, differential analysis was performed in different microbes in the two different groups, which contributed to exploring the difference in intestinal microbe structures between the two groups. Meanwhile, a series of related factors, including age, sex, body mass index, ethnicity, physical condition, and living altitude, were included in the MPPCD, with special focus on living altitude. To date, this is the first intestinal microbe database to introduce altitude features. In conclusion, we hope that MPPCD will serve as a fundamental research support for the relationship between human gut microbes and host health and disease, especially in ethnic minorities.


Subject(s)
Gastrointestinal Microbiome , Humans , Minority Groups , Ethnic and Racial Minorities , Ethnicity , China
4.
Sci Total Environ ; 867: 161428, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36623644

ABSTRACT

Elucidating the effects underlying soil organic carbon (SOC) variation is imperative for ascertaining the potential drivers of mitigating climate change. However, the drivers of variations in various SOC fractions (e.g., macroaggregate C, microaggregate C, and silt and clay C) at different soil depths remain poorly understood. Here, we investigated the effects and relative contributions of climatic, plant, edaphic, and microbial factors on soil aggregate C between the topsoil (0-10 cm) and subsoil (20-30 cm) across alpine grasslands on the Tibetan Plateau. Results showed that the C content of macroaggregates, microaggregates, and silt and clay fractions in the topsoil was 128.6 %, 49.6 %, and 242.4 % higher than that in the subsoil, respectively. Overall, plant properties were the most determinants controlling soil macroaggregate, microaggregate, and silt + clay associated C for both two soil depths, accounting for 32.2 %, 37.4 %, and 38.8 % of the variation, respectively, followed by edaphic, microbial, and climatic factors. The aggregate C of both soil depths was significantly related with the climatic, plant, edaphic, and microbial factors, but the relative importance of these determinants was soil-depth dependent. Specifically, the effects of plant root biomass and microbial (e.g., microbial biomass carbon and fungal diversity index) factors on each aggregate C weakened with soil depth, but the importance of edaphic factors (e.g., clay content, pH, and bulk density) strengthened with soil depth, except for the weakened effect of bulk density on the microaggregate C. And the effects of climatic factor (e.g., mean annual precipitation) on macroaggregate and microaggregate C increased with soil depth. Our results highlight differential drivers and their impacts on soil aggregate C between the topsoil and subsoil, which benefits biogeochemical models for more accurately forecasting soil C dynamics and its feedbacks to environmental changes.


Subject(s)
Grassland , Soil , Soil/chemistry , Tibet , Carbon/analysis , Clay , Plants
5.
Front Plant Sci ; 13: 1005895, 2022.
Article in English | MEDLINE | ID: mdl-36147231

ABSTRACT

Phosphorus (P) is an indispensable mineral nutrient for plant growth and agricultural production. Plants acquire and redistribute inorganic phosphate (Pi) via Pi transporters (PHT1s/PTs). However, apart from MtPT4, functions of the M. truncatula (Medicago truncatula) PHT1s remain unclear. In this study, we evaluated the function of the PHT1 family transporter MtPT5 in M. truncatula. MtPT5 was closely related to AtPHT1; 1 in Arabidopsis (Arabidopsis thaliana) and GmPT7 in soybean (Glycine max). MtPT5 was highly expressed in leaves in addition to roots and nodules. Ectopic expression of MtPT5 complemented the Pi-uptake deficiency of Arabidopsis pht1;1Δ4Δ double mutant, demonstrating the Pi-transport activity of MtPT5 in plants. When overexpressing MtPT5 in M. truncatula, the transgenic plants showed larger leaves, accompanying with higher biomass and Pi enrichment compared with wild type. All these data demonstrate that MtPT5 is important for leaf growth and Pi accumulation of M. truncatula and provides a target for molecular breeding to improve forage productivity.

6.
BMC Plant Biol ; 22(1): 295, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35705909

ABSTRACT

BACKGROUND: SQUAMOSA promoter-binding protein-like (SPL) transcription factors are widely present in plants and are involved in signal transduction, the stress response and development. The SPL gene family has been characterized in several model species, such as A. thaliana and G. max. However, there is no in-depth analysis of the SPL gene family in forage, especially alfalfa (Medicago sativa L.), one of the most important forage crops worldwide. RESULT: In total, 76 putative MsSPL genes were identified in the alfalfa genome with an uneven distribution. Based on their identity and gene structure, these MsSPLs were divided into eight phylogenetic groups. Seventy-three MsSPL gene pairs arose from segmental duplication events, and the MsSPLs on the four subgenomes of individual chromosomes displayed high collinearity with the corresponding M. truncatula genome. The prediction of the cis-elements in the promoter regions of the MsSPLs detected two copies of ABA (abscisic acid)-responsive elements (ABREs) on average, implying their potential involvement in alfalfa adaptation to adverse environments. The transcriptome sequencing of MsSPLs in roots and leaves revealed that 54 MsSPLs were expressed in both tissues. Upon salt treatment, three MsSPLs (MsSPL17, MsSPL23 and MsSPL36) were significantly regulated, and the transcription level of MsSPL36 in leaves was repressed to 46.6% of the control level. CONCLUSION: In this study, based on sequence homology, we identified 76 SPL genes in the alfalfa. The SPLs with high identity shared similar gene structures and motifs. In total, 71.1% (54 of 76) of the MsSPLs were expressed in both roots and leaves, and the majority (74.1%) preferred underground tissues to aerial tissues. MsSPL36 in leaves was significantly repressed under salt stress. These findings provide comprehensive information regarding the SPB-box gene family for improve alfalfa tolerance to high salinity.


Subject(s)
Gene Expression Regulation, Plant , Medicago sativa , Abscisic Acid/metabolism , Medicago sativa/metabolism , Phylogeny , Plant Proteins/metabolism , Salt Stress/genetics , Stress, Physiological/genetics
7.
JCI Insight ; 6(21)2021 11 08.
Article in English | MEDLINE | ID: mdl-34582376

ABSTRACT

MALAT1-associated small cytoplasmic RNA (mascRNA) is a highly conserved transfer RNA-like (tRNA-like) noncoding RNA whose function remains largely unknown. We show here that this small RNA molecule played a role in the stringent control of TLR-mediated innate immune responses. mascRNA inhibited activation of NF-κB and mitogen-activated protein kinase (MAPK) signaling and the production of inflammatory cytokines in macrophages stimulated with LPS, a TLR4 ligand. Furthermore, exogenous mascRNA alleviated LPS-induced lung inflammation. However, mascRNA potentiated the phosphorylation of IRF3 and STAT1 and the transcription of IFN-related genes in response to the TLR3 ligand poly(I:C) both in vitro and in vivo. Mechanistically, mascRNA was found to enhance K48-linked ubiquitination and proteasomal degradation of TRAF6, thereby negatively regulating TLR-mediated MyD88-dependent proinflammatory signaling while positively regulating TRIF-dependent IFN signaling. Additionally, heterogeneous nuclear ribonucleoprotein H (hnRNP H) and hnRNP F were found to interact with mascRNA, promote its degradation, and contribute to the fine-tuning of TLR-triggered immune responses. Taken together, our data identify a dual role of mascRNA in both negative and positive regulation of innate immune responses.


Subject(s)
Antiviral Agents/therapeutic use , Cytokines/metabolism , Inflammation/genetics , RNA, Long Noncoding/metabolism , RNA, Small Cytoplasmic/metabolism , Toll-Like Receptor 4/metabolism , Antiviral Agents/pharmacology , Humans , Immunity, Innate
8.
Mol Med Rep ; 23(6)2021 06.
Article in English | MEDLINE | ID: mdl-33864660

ABSTRACT

In recent years, increasing evidence has confirmed that exosomal circular RNAs (circRNAs) serve a crucial role in the prognostic prediction and diagnosis of liver cancer (LC). The present study compared the expression patterns of exosomal circRNAs during transarterial chemoembolization (TACE). CircRNA sequencing analysis identified 390 differentially expressed circRNAs between the prior TACE and following the first TACE operation groups and 489 differentially expressed circRNAs between the prior to TACE and following the second TACE operation groups. Gene Ontology analysis of the differentially expressed circRNAs demonstrated that they were associated with fatty acid metabolism, receptor binding and membrane protein complexes. Kyoto Encyclopedia of Genes and Genomes pathway analysis predicted that protein digestion and absorption pathways were activated following TACE. A novel gene was screened out; hsa­circRNA­G004213 (circ­G004213) was significantly upregulated following TACE (fold change >10, P < 0.01). Further analysis found circ­G004213 significantly increased the cisplatin sensitivity of HepG2 cells and positively associated with the prognosis of tumor­bearing mice. Based on the potential downstream miRNAs and mRNAs, the circRNA­miRNA­mRNA network was constructed. It was demonstrated that circ­G004213 regulated cisplatin resistance via the miR­513b­5p/PRPF39 axis. Finally, the present study confirmed that circ­G004213 was positively associated with the prognosis of patients with LC following TACE. Therefore, circ­G004213 may be used as an indicator for predicting the efficacy of TACE.


Subject(s)
Antineoplastic Agents/therapeutic use , Carcinoma, Hepatocellular/genetics , Cisplatin/therapeutic use , Drug Resistance, Neoplasm , Exosomes/genetics , Liver Neoplasms/genetics , RNA, Circular/metabolism , Adult , Aged , Animals , Antineoplastic Agents/administration & dosage , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/therapy , Cells, Cultured , Chemoembolization, Therapeutic , Cisplatin/administration & dosage , Exosomes/metabolism , HEK293 Cells , Hep G2 Cells , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , Male , Mice , Mice, Inbred BALB C , Mice, Nude , MicroRNAs/genetics , MicroRNAs/metabolism , Middle Aged , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , RNA, Circular/genetics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
9.
Front Plant Sci ; 12: 826584, 2021.
Article in English | MEDLINE | ID: mdl-35185967

ABSTRACT

Salt stress is the main abiotic factor affecting alfalfa yield and quality. However, knowledge of the genetic basis of the salt stress response in alfalfa is still limited. Here, a genome-wide association study (GWAS) involving 875,023 single-nucleotide polymorphisms (SNPs) was conducted on 220 alfalfa varieties under both normal and salt-stress conditions. Phenotypic analysis showed that breeding status and geographical origin play important roles in the alfalfa salt stress response. For germination ability under salt stress, a total of 15 significant SNPs explaining 9%-14% of the phenotypic variation were identified. For tolerance to salt stress in the seedling stage, a total of 18 significant SNPs explaining 12%-23% of the phenotypic variation were identified. Transcriptome analysis revealed 2,097 and 812 differentially expressed genes (DEGs) that were upregulated and 2,445 and 928 DEGs that were downregulated in the leaves and roots, respectively, under salt stress. Among these DEGs, many encoding transcription factors (TFs) were found, including MYB-, CBF-, NAC-, and bZIP-encoding genes. Combining the results of our GWAS analysis and transcriptome analysis, we identified a total of eight candidate genes (five candidate genes for tolerance to salt stress and three candidate genes for germination ability under salt stress). Two SNPs located within the upstream region of MsAUX28, which encodes an auxin response protein, were significantly associated with tolerance to salt stress. The two significant SNPs within the upstream region of MsAUX28 existed as three different haplotypes in this panel. Hap 1 (G/G, A/A) was under selection in the alfalfa domestication and improvement process.

10.
J Vis Exp ; (144)2019 02 05.
Article in English | MEDLINE | ID: mdl-30799850

ABSTRACT

Because of their critical role in regulating immune responses, macrophages have continuously been the subject of intensive research and represent a promising therapeutic target in many disorders, such as autoimmune diseases, atherosclerosis, and cancer. RNAi-mediated gene silencing is a valuable approach of choice to probe and manipulate macrophage function; however, the transfection of macrophages with siRNA is often considered to be technically challenging, and, at present, few methodologies dedicated to the siRNA transfer to macrophages are available. Here, we present a protocol of using polyethyleneimine-coated superparamagnetic iron oxide nanoparticles (PEI-SPIONs) as a vehicle for the targeted delivery of siRNA to macrophages. PEI-SPIONs are capable of binding and completely condensing siRNA when the Fe:siRNA weight ratio reaches 4 and above. In vitro, these nanoparticles can efficiently deliver siRNA into primary macrophages, as well as into the macrophage-like RAW 264.7 cell line, without compromising cell viability at the optimal dose for transfection, and, ultimately, they induce siRNA-mediated target gene silencing. Apart from being used for in vitro siRNA transfection, PEI-SPIONs are also a promising tool for delivering siRNA to macrophages in vivo. In view of its combined features of magnetic property and gene-silencing ability, systemically administered PEI-SPION/siRNA particles are expected not only to modulate macrophage function but also to enable macrophages to be imaged and tracked. In essence, PEI-SPIONs represent a simple, safe, and effective nonviral platform for siRNA delivery to macrophages both in vitro and in vivo.


Subject(s)
Ferric Compounds/chemistry , Macrophages/metabolism , Nanoparticles/chemistry , Polyethyleneimine/chemistry , RNA, Small Interfering/genetics , Humans , Transfection
11.
J Hazard Mater ; 174(1-3): 175-80, 2010 Feb 15.
Article in English | MEDLINE | ID: mdl-19796869

ABSTRACT

The solvent has a large effect on the crystal morphology of the organic explosive compound octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX, C(4)H(8)N(8)O(8)). The attachment energy calculations predict a growth morphology in vacuum dominated by (020), (011), (102 ), (111 ) and (100) crystal forms. Molecular dynamics simulations are performed for these crystal faces of HMX in contact with acetone solvent. A corrected attachment energy model, accounting for the surface chemistry and the associated topography (step structure) of the habit crystal plane, is applied to predict the morphological importance of a crystal surface in solvent. From the solvent-effected attachment energy calculations it follows that the (100) face becomes morphologically more important compared with that in vacuum, while the (020) and (102 ) are not visible at all. This agrees well with the observed experimental HMX morphology grown from the acetone solution.


Subject(s)
Azocines/chemistry , Molecular Dynamics Simulation , Solvents/chemistry , Crystallization , Models, Molecular
SELECTION OF CITATIONS
SEARCH DETAIL
...