Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
2.
ACS Appl Mater Interfaces ; 16(5): 5957-5964, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38285625

ABSTRACT

Photocatalytic oxidation desulfurization (PODS) has emerged as a promising, ecofriendly alternative to traditional, energy-intensive fuel desulfurization methods. Nevertheless, its progress is still hindered due to the slow sulfide oxidation kinetics in the current catalytic systems. Herein, we present a MoOx decorated on a Cu2O@CuO core-shell catalyst, which enables a new, efficient PODS pathway by in situ generation of hydrogen peroxide (H2O2) with saturated moist air as the oxidant source. The photocatalyst delivers remarkable specific activity in oxidizing dibenzothiophene (DBT), achieving a superior rate of 7.8 mmol g-1 h-1, while maintaining a consistent performance across consecutive reuses. Experimental investigations reveal that H2O2 is produced through the two-electron oxygen reduction reaction (ORR), and both H2O2 and the hydroxyl radicals (•OH) generated from it act as the primary reactive species responsible for sulfide oxidation. Importantly, our catalyst accomplishes complete PODS of real diesel fuel, underscoring an appealing industrial prospect for our photocatalyst.

3.
J Mater Chem B ; 12(3): 762-771, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38167689

ABSTRACT

For hydrogel-based flexible sensors, it is a challenge to enhance the stability at sub-zero temperatures while maintaining good self-healing properties. Herein, an anti-freezing nanocomposite hydrogel with self-healing properties and conductivity was designed by introducing cellulose nanocrystals (CNCs) and phytic acid (PA). The CNCs were grafted with polypyrrole (PPy) by chemical oxidation, which were used as the nanoparticle reinforcement phase to reinforce the mechanical strength of hydrogels (851.8%). PA as a biomass material could form strong hydrogen bond interactions with H2O molecules, endowing hydrogels with prominent anti-freezing properties. Based on the non-covalent interactions, the self-healing rate of the hydrogels reached 92.9% at -15 °C as the content of PA was 40.0 wt%. Hydrogel-based strain sensors displayed high sensitivity (GF = 0.75), rapid response time (350 ms), good conductivity (3.1 S m-1) and stability at -15 °C. Various human movements could be detected by using them, including small (smile and frown) and large changes (elbow and knee bending). This work provides a promising method for the development of flexible wearable sensors that work stably in frigid environments.


Subject(s)
Nanoparticles , Polymers , Humans , Nanogels , Phytic Acid , Cellulose , Pyrroles , Hydrogels
4.
Int J Biol Macromol ; 252: 126473, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37619684

ABSTRACT

The detection of human motion and sweat composition are important for human health or sports training, so it is necessary to develop flexible sensors for monitoring exercise processes and sweat detection. Mussel secretion of adhesion proteins enables self-healing of byssus and adhesion to surfaces. We prepared Au nanoparticles@polydopamine (AuNPs@PDA) nanomaterials based on mussel-inspired chemistry and compounded them with polyvinyl alcohol (PVA) hydrogels to obtain PVA/AuNPs@PDA self-healing nanocomposite hydrogels. Dopamine (DA) was coated on the surface of AuNPs to obtain AuNPs based composite (AuNPs@PDA) and the AuNPs@PDA was implanted into the PVA hydrogels to obtain nanocomposite hydrogel through facile freeze-thaw cycle. Glucose oxidase (GOD) was added to the hydrogel matrix to achieve specific detection of glucose in sweat. The obtained hydrogels exhibit high deformability (573.7 %), excellent mechanical strength (550.3 KPa) and self-healing properties (85.1 %). The PVA/AuNPs@PDA hydrogel sensors exhibit quick response time (185.0 ms), wide strain sensing range (0-500 %), superior stability and anti-fatigue properties in motion detection. The detection of glucose had wide concentration detection range (1.0 µmol/L-200.0 µmol/L), low detection limits (0.9 µmol/L) and high sensitivity (24.4 µA/mM). This work proposes a reference method in dual detection of human exercise and sweat composition analysis.


Subject(s)
Glucose Oxidase , Metal Nanoparticles , Humans , Nanogels , Gold , Sweat , Glucose , Hydrogels/chemistry , Electric Conductivity
5.
BMC Musculoskelet Disord ; 24(1): 640, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37559005

ABSTRACT

BACKGROUND: Amputation is a serious complication of acute compartment syndrome (ACS), and predicting the risk factors associated with amputation remains a challenge for surgeons. The aim of this study was to analyze the risk factors for amputation in patients with ACS and develop a nomogram to predict amputation risk more accurately. METHODS: The study population consisted of 143 patients (32 in the amputation group and 111 in the limb preservation group) diagnosed with ACS. LASSO and multivariate logistic regression were used to screen predictors and create a nomogram. The model's accuracy was assessed by receiver operating characteristic (ROC) curves, C-index, calibration curves, and decision curve analysis (DCA). RESULTS: The predictors included cause of injury, vascular damage, shock, and fibrinogen in the nomogram. The C-index of the model was 0.872 (95% confidence interval: 0.854-0.962), and the C-index calculated by internal validation was 0.838. The nomogram's area under the curve (AUC) was 0.849, and the calibration curve demonstrated a high degree of agreement between the nomogram's predictions and actual observations. Additionally, the DCA indicated good clinical utility for the nomogram. CONCLUSION: The risk of amputation in ACS patients is associated with the cause of injury, vascular damage, shock, and fibrinogen. Our nomogram integrating clinical factors and biochemical blood markers enables doctors to more conveniently predict the risk of amputation in patients with ACS.


Subject(s)
Compartment Syndromes , Hemostatics , Vascular System Injuries , Humans , Nomograms , Amputation, Surgical/adverse effects , Compartment Syndromes/diagnosis , Compartment Syndromes/epidemiology , Compartment Syndromes/etiology , Fibrinogen
6.
Dalton Trans ; 52(31): 10778-10788, 2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37477380

ABSTRACT

Oxide semiconductors with mixed-valence states generally exhibit excellent optoelectronic and photochemical properties due to facile charge transfer in redox reactions. In this work, we investigate the effects of mixed alkali on the optical absorption, luminescence spectra and photocatalytic abilities of (Na1-xKx)Sb3O7 nanoparticles. All the samples are fabricated using a simple one-step hydrothermal method. The structural studies show that the largest substitution of K+ ions in (Na1-xKx)Sb3O7 is at x = 0.3. In hydrothermal synthesis, the mixed arrangement of K+ and Na+ in (Na1-xKx)Sb3O7 has an influence on the crystal shape of particles. NaSb3O7 develops into a regular cube shape. With the increase of K+ ions in (Na1-xKx)Sb3O7, the edges and corners of the cube are further ground off, resulting in irregularly spherical particles. This mixed-alkali antimonite belongs to a p-type indirect allowed transition semiconductor, and the optical band gap is 2.71 eV (x = 0.3). The intrinsic luminescence of NaSb3O7 is detected at 540 nm, which is nearly quenched in Na0.7K0.3Sb3O7. It is demonstrated that the substitution of K+ in NaSb3O7 significantly increases the photodegradation of RhB solutions. There are two types of Sb cations, i.e., Sb5+ and Sb3+ mixed in the structure. The improved photocatalysis is attributed to the charge mediators between Sb5+/Sb3+ couples. The experiment shows that co-doping cations in antimonite oxides may be one of the strategies to improve photochemical properties.

7.
Inorg Chem ; 62(24): 9563-9577, 2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37270704

ABSTRACT

Compounds with ordered and interconnected channels have versatile multifunctional applications in technological fields. In this work, we report the intrinsic- and Eu3+-activated luminescence in NbAlO4 with a wide channel structure. NbAlO4 is an n-type semiconductor with an indirect allowed transition and a band-gap energy of 3.26 eV. The conduction band and valence band are composed of Nb 3d and O 2p states, respectively. Unlike the common niobate oxide Nb2O5, NbAlO4 exhibits efficient self-activated luminescence with good thermal stability even at room temperature. The AlO4 tetrahedron effectively blocks the transfer/dispersion of excitation energy between NbO6 chains in NbAlO4, allowing for effective self-activated luminescence from NbO6 activation centers. Moreover, Eu3+-doped NbAlO4 displayed a bright red luminescence of 5D0 → 7F2 transition at 610 nm. The site-selective excitation and luminescence of Eu3+ ions in a spectroscopic probe were utilized to investigate the doping mechanism. It is evidenced that Eu3+ is doped in the structure channel in NbAlO4 lattices, not in the normal cation sites of Nb5+ or Al3+. The experimental findings are valuable in developing new luminescent materials and improving the understanding of the material's channel structure.

8.
Front Psychiatry ; 14: 1043854, 2023.
Article in English | MEDLINE | ID: mdl-37151969

ABSTRACT

Background: Postpartum depression is the most common psychiatric disorder in pregnant women during the postpartum period and requires early detection and treatment. Previous studies have found that opioids use affects depression and anxiety disorders. Although it has long been suspected that opioids may contribute to the development of postpartum depression, observational studies are susceptible to confounding factors and reverse causality, making it difficult to determine the direction of these associations. Methods: To examine the causal associations between opioids and non-opioid analgesics with postpartum depression, we utilized large-scale genome-wide association study (GWAS) genetic pooled data from two major databases: opioids, salicylate analgesic, non-steroidal anti-inflammatory drugs (NSAIDs), and aniline analgesics GWAS data from the United Kingdom Biobank database. GWAS data for postpartum depression were obtained from the FinnGen database. The causal analysis methods used random-effects inverse variance weighting (IVW), and complementary sensitivity analyses using weighted median, MR-Egger method, and MR-PRESSO test. Results: In the IVW analysis, Mendelian randomization (MR) analysis showed that opioids increased the risk of postpartum depression (OR, 1.169; 95% CI, 1.050-1.303; p = 0.005). Bidirectional analysis showed a significant causal relationship between genetically predicted postpartum depression and increased risk of opioids and non-opioid analgesics use (opioids OR, 1.118; 95% CI, 1.039-1.203; p = 0.002; NSAIDs OR, 1.071; 95% CI, 1.022-1.121; p = 0.004; salicylates OR, 1.085; 95% CI, 1.026-1.146; p = 0.004; and anilides OR, 1.064; 95% CI, 1.018-1.112; p = 0.006). There was no significant heterogeneity or any significant horizontal pleiotropy bias in the sensitivity analysis. Conclusion: Our study suggests a potential causal relationship between opioids use and the risk of postpartum depression. Additionally, postpartum depression is associated with an increased risk of opioids and non-opioid analgesics use. These findings may provide new insights into prevention and intervention strategies for opioids abuse and postpartum depression.

9.
BMC Anesthesiol ; 23(1): 151, 2023 05 03.
Article in English | MEDLINE | ID: mdl-37138216

ABSTRACT

BACKGROUND: Chronic morphine usage induces lasting molecular and microcellular adaptations in distinct brain areas, resulting in addiction-related behavioural abnormalities, drug-seeking, and relapse. Nonetheless, the mechanisms of action of the genes responsible for morphine addiction have not been exhaustively studied. METHODS: We obtained morphine addiction-related datasets from the Gene Expression Omnibus (GEO) database and screened for Differentially Expressed Genes (DEGs). Weighted Gene Co-expression Network Analysis (WGCNA) functional modularity constructs were analyzed for genes associated with clinical traits. Venn diagrams were filtered for intersecting common DEGs (CDEGs). Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis for functional annotation. Protein-protein interaction network (PPI) and CytoHubba were used to screen for hub genes. Potential treatments for morphine addiction were figured out with the help of an online database. RESULTS: Sixty-five common differential genes linked to morphine addiction were identified, and functional enrichment analysis showed that they were primarily involved in ion channel activity, protein transport, the oxytocin signalling pathway, neuroactive ligand-receptor interactions, and other signalling pathways. Based on the PPI network, ten hub genes (CHN2, OLIG2, UGT8A, CACNB2, TIMP3, FKBP5, ZBTB16, TSC22D3, ISL1, and SLC2A1) were checked. In the data set GSE7762, all of the Area Under Curve (AUC) values for the hub gene Receiver Operating Characteristic (ROC) curves were greater than 0.8. We also used the DGIdb database to look for eight small-molecule drugs that might be useful for treating morphine addiction. CONCLUSIONS: The hub genes are crucial genes associated with morphine addiction in the mouse striatum. The oxytocin signalling pathway may play a vital role in developing morphine addiction.


Subject(s)
Morphine Dependence , Animals , Mice , Morphine Dependence/drug therapy , Morphine Dependence/genetics , Oxytocin , Morphine/pharmacology , Brain , Databases, Factual
10.
J Org Chem ; 88(11): 6911-6917, 2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37154472

ABSTRACT

A visible-light metal-free photocatalytic regioselective and enantioselective alkene halofunctionalization reaction under mild conditions is reported. Various terminal and internal alkenes were transformed to their α-halogenated and α,ß-dibrominated derivatives in good to excellent yields within reaction time as short as 5 min. Water can be used as the "green" nucleophile and solvent in the halohydroxylation and halo-oxidation reactions. Different types of products can be obtained by adjusting the reaction conditions. In addition, sunlight is proved to produce products with similar yields, representing a practical example of solar synthesis and providing an opportunity for solar energy utilization.

11.
Biomed Pharmacother ; 161: 114508, 2023 May.
Article in English | MEDLINE | ID: mdl-37002582

ABSTRACT

Heterotopic ossification (HO) denotes the presence of mature bone tissue in soft tissues or around joints. Inflammation is a key driver of traumatic HO, and macrophages play an important role in this process. Ethyl caffeate (ECF), a critical active compound found in Petunia, exerts significant anti-inflammatory effects. Herein, we established a mouse model of HO by transection of the Achilles tendon and back burn and found abundant macrophage infiltration in the early stage of HO, which decreased with time. In vitro and in vivo experiments indicated that ECF inhibited macrophage polarization, and mechanistic studies showed that it inhibited the SIRT1/NF-κB signalling pathway, thereby suppressing the release of downstream inflammatory cytokines. ECF reduced HO in mice, and its effect was comparable to indomethacin (INDO). In vitro studies revealed that ECF did not directly affect the mineralization of mesenchymal stem cells (MSCs) or osteogenic differentiation but inhibited these processes by reducing the level of inflammatory cytokines in the conditioned medium (CM). Thus, M1 macrophages may play a crucial role in the pathogenesis of HO, and ECF is a prospective candidate for the prevention of trauma-induced HO. DATA AVAILABILITY: Data will be made available on request.


Subject(s)
NF-kappa B , Ossification, Heterotopic , Mice , Animals , NF-kappa B/metabolism , Osteogenesis , Sirtuin 1 , Macrophages/metabolism , Cytokines/pharmacology
12.
Front Immunol ; 14: 1023991, 2023.
Article in English | MEDLINE | ID: mdl-37033949

ABSTRACT

Background: Telomere length shortening can cause senescence and apoptosis in various immune cells, resulting in immune destabilization and ageing of the organism. In this study, we aimed to systematically assess the causal relationship of leukocyte telomere length (LTL) with ankylosing spondylitis (AS) and rheumatoid arthritis (RA) using a Mendelian randomization study. Methods: LTL (n=472174) was obtained from the UK Biobank genome-wide association study pooled data. AS (n=229640), RA (n=212472) were obtained from FinnGen database. MR-Egger, inverse variance weighting, and weighted median methods were used to estimate the effects of causes. Cochran's Q test, MR Egger intercept test, MR-PRESSO, leave-one-out analysis, and funnel plots were used to look at sensitivity, heterogeneity, and multiple effects. Forward MR analysis considered LTL as the exposure and AS, RA as the outcome. Reverse MR analysis considered AS, RA as the exposure and LTL as the outcome. Results: In the forward MR analysis, inverse variance-weighted and weighted median analysis results indicated that longer LTL might be associated with increased risk of AS (IVW: OR = 1.55, 95% CI: 1.14-2.11, p = 0.006). MR Egger regression analysis showed no pleiotropy between instrumental variables (IVs) (Egger intercept= 0.008, p = 0.294). The leave-one-out analysis showed that each single nucleotide polymorphism (SNP) of AS was robust to each outcome. No significant causal effects were found between AS, RA and LTL in the reverse MR analysis. Conclusion: Longer LTL may be related with an increased risk of developing AS, and these findings provide a foundation for future clinical research on the causal association between LTL and AS.


Subject(s)
Arthritis, Rheumatoid , Spondylitis, Ankylosing , Humans , Spondylitis, Ankylosing/genetics , Spondylitis, Ankylosing/complications , Genome-Wide Association Study , Mendelian Randomization Analysis , Arthritis, Rheumatoid/genetics , Leukocytes , Telomere/genetics
13.
Biomacromolecules ; 24(5): 2087-2099, 2023 05 08.
Article in English | MEDLINE | ID: mdl-37079862

ABSTRACT

Nowadays, stretchable self-healing hydrogels designed by biomass-based materials have gathered remarkable attention in numerous frontier fields such as wound healing, health monitoring issues, and electronic skin. In this study, soy protein isolate (SPI), a common plant protein, was cross-linked to nanoparticles (SPI NPs) by Genipin, (Gen) which was attracted from the native Geniposide. Oil-in-water (O/W) Pickering emulsion was formed by SPI NPs wrapping the linseed oil, and further implanted into poly(acrylic acid)/guar gum (PAA/GG)-based self-healing hydrogels by multiple reversible weak interactions. With the addition of Pickering emulsion, the hydrogels have achieved a remarkable self-healing ability (self-healing efficiency could reach 91.6% within 10 h) and mechanical properties (tensile strength of 0.89 MPa and strain of 853.2%). Therefore, these hydrogels with good reliable durability have outstanding application prospects in sustainable materials.


Subject(s)
Nanoparticles , Soybean Proteins , Hydrogels , Emulsions
14.
J Colloid Interface Sci ; 631(Pt B): 33-43, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36379114

ABSTRACT

Integrating advanced technologies into solar-driven water evaporation is gradually considered as a clean and sustainable way to acquire freshwater from saline or wastewater. In this study, thin molybdenum sulfide nanosheet arrays (MoS2 NSAs) modified by tungsten oxide nanoparticles (WO3) were designed. The as-prepared solar absorber could purify water and accomplish photocatalytic degradation of dyes that existed in bulk water via solar-driven water evaporation. Compared with bare MoS2 NSAs, the modification of WO3 enhanced the separation of electrons and holes within the solar absorber, resulting in the improvement of photocatalytic efficiency. The net evaporation rate of the solar absorber reached 0.97 kg m-2h-1 and the degradation rate constant of rhodamine B (RhB) reached 0.101 min-1 under 1 sun. This study successfully combined photothermal conversion and photocatalytic technologies and provided a new method for the treatment of dye wastewater with zero wastewater discharge.


Subject(s)
Molybdenum , Water Purification , Coloring Agents , Wastewater , Water
15.
Chem Sci ; 13(47): 14063-14069, 2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36540827

ABSTRACT

Aerobic oxidative desulfurization (AODS) promises a sustainable alternative technology for diesel desulfurization, which necessitates the efficient aerobic oxidation of thiophenic sulfides under mild conditions to minimize energy input, yet being longstandingly plagued by the grand challenge in low-temperature activation of triplet oxygen. Here we synthesize vanadium nitride quantum dots on graphene to controllably create coordination-unsaturated edge/corner V sites for boosting the AODS reaction. The catalyst activates the reaction at 70 °C, and is two orders of magnitude more active than the best V-based catalysts. We demonstrate through computational studies that the low-coordinated edge/corner V sites can effectively activate oxygen and adsorb sulfides to lower the activation barrier, dramatically enhancing the activity. The catalyst achieves deep AODS of real diesel at 80 °C with negligible attenuation in successive reuses, which highlights its attractive industrial potential. These findings provide scientific and practical insights to develop high-performance catalysts for a sustainable AODS process.

16.
PLoS One ; 17(8): e0271898, 2022.
Article in English | MEDLINE | ID: mdl-35925966

ABSTRACT

Although observational studies have explored factors that may be associated with osteoporosis, it is not clear whether they are causal. Osteoporosis in men is often underestimated. This study aimed to identify the causal risk factors associated with bone mineral density(BMD) in men. Single nucleotide polymorphisms (SNPs) associated with the exposures at the genome-wide significance (p < 5x10-8) level were obtained from corresponding genome-wide association studies (GWASs) and were utilized as instrumental variables. Summary-level statistical data for BMD were obtained from two large-scale UK Biobank GWASs. A Mendelian randomization (MR) analysis was performed to identify causal risk factors for BMD. Regarding the BMD of the heel bone, the odds of BMD increased per 1-SD increase of free testosterone (FT) (OR = 1.13, P = 9.4 × 10-17), together with estradiol (E2) (OR = 2.51, P = 2.3 × 10-4). The odds of BMD also increased with the lowering of sex-hormone binding globulin (SHBG) (OR = 0.87, P = 7.4 × 10-8) and total testosterone (TT) (OR = 0.96, P = 3.2 × 10-2) levels. Regarding the BMD of the lumbar spine, the odds of BMD increased per 1-SD increase in FT (OR = 1.18, P = 4.0 × 10-3). Regarding the BMD of the forearm bone, the odds of BMD increased with lowering SHBG (OR = 0.75, P = 3.0 × 10-3) and TT (OR = 0.85, P = 3.0 × 10-3) levels. Our MR study corroborated certain causal relationships and provided genetic evidence among sex hormone traits, lifestyle factors and BMD. Furthermore, it is a novel insight that TT was defined as a disadvantage for osteoporosis in male European populations.


Subject(s)
Mendelian Randomization Analysis , Osteoporosis , Bone Density/genetics , Genome-Wide Association Study , Humans , Life Style , Male , Osteoporosis/genetics , Polymorphism, Single Nucleotide , Testosterone
17.
Colloids Surf B Biointerfaces ; 216: 112554, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35580460

ABSTRACT

Janus bio-nanomaterials have great application potential in functional solid surfactants, probes and flexible sensors. In this manuscript, the sustainable Janus cellulose nanocrystals-type (CNCs-type) nanomaterials were prepared by Pickering emulsion template method. The asymmetric functionalism of Janus nanorods was realized by asymmetrically grafting polypyrrole (PPy) and polydopamine (PDA) onto different sides of CNCs (Janus CNCs-PPy /PDA (JCNs)). JCNs was successfully applied to self-healing nanocomposite hydrogels and further applied to the development of flexible sensors. The self-healing efficiency of nanocomposite hydrogels was 87.2%, and the stress and strain reached 3.50 MPa and 453.45%, respectively. It is worth noting that flexible sensors have been widely used in the field of wearable electronic sensing for real-time monitoring of human movement due to their high sensitivity (gauge factor (GF) = 9.9) and fast response time (260 ms).


Subject(s)
Nanocomposites , Nanoparticles , Cellulose/chemistry , Electric Conductivity , Humans , Hydrogels/chemistry , Nanocomposites/chemistry , Nanogels , Nanoparticles/chemistry , Polymers/chemistry , Pyrroles
18.
Environ Sci Pollut Res Int ; 29(15): 22082-22092, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34773584

ABSTRACT

As a promising solar energy conversion technology, solar water evaporation has been regarded as an energy-efficient approach to alleviate the freshwater shortage caused by industrial water pollution. In this paper, we developed a straightforward method with a solar-driven steam generator (SSG) based on the carbonized green algae (CGA) as a light-to-heat conversion material (LHCM) to deal with the industrial wastewater of gold smelting. CGA SSG exhibited excellent light absorption, hydrophilicity, and water evaporation rate (1.66 kg·m-2·h-1). It accomplished the non-selective removal of heavy metal ions (Cu2+, Pb2+, Zn2+, Hg2+) and CN- in the treatment of gold smelting wastewater, and the ion removal rate was 99%. Compared with traditional and complex wastewater treatment technologies, the solar-driven CGA SSG presented many advantages (low cost, simple preparation, and high performance) in water purification, which could be employed in backward areas to obtain clean water.


Subject(s)
Chlorophyta , Solar Energy , Water Purification , Gold , Wastewater , Water Purification/methods
20.
Int J Biol Macromol ; 191: 627-636, 2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34536475

ABSTRACT

Wearable strain sensors have received widespread attention in research fields due to their applications in human motion detection. In this manuscript, the fabrication of functionalized Janus graphene oxide (GO) nanosheets were used by Pickering emulsion template. Polypyrrole (PPy) and poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) were asymmetrically grafted on the two sides of GO (GO@PPy/PDMAEMA Janus NS), which successfully applied to synthesize Janus NS/guar gum-poly(acrylic acid) (GG-PAA) self-healing nanocomposite hydrogels. The outstandingly improved self-healing efficiency (92.8% for 2 h) and mechanical properties (strength of 4.12 MPa and toughness of 873.8%) of nanocomposite hydrogels were mainly supported by the collaborative effect of reversible electrostatic interactions, multiple hydrogen bonds and metal-ligand coordination. Moreover, the hydrogels exhibited strain sensitivity and could be able to monitor a variety of human motions, which have outstanding application prospects in wearable flexible sensors.


Subject(s)
Acrylic Resins/chemistry , Biosensing Techniques/methods , Galactans/chemistry , Graphite/chemistry , Hydrogels/chemistry , Mannans/chemistry , Nanostructures/chemistry , Plant Gums/chemistry , Biosensing Techniques/instrumentation , Mechanical Phenomena , Wearable Electronic Devices
SELECTION OF CITATIONS
SEARCH DETAIL
...