Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 26(9): 107676, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37680490

ABSTRACT

With the exponential expansion of electric vehicles (EVs), the disposal of Li-ion batteries (LIBs) is poised to increase significantly in the coming years. Effective recycling of these batteries is essential to address environmental concerns and tap into their economic value. Direct recycling has recently emerged as a promising solution at the laboratory level, offering significant environmental benefits and economic viability compared to pyrometallurgical and hydrometallurgical recycling methods. However, its commercialization has not been realized in the terms of financial feasibility. This perspective provides a comprehensive analysis of the obstacles that impede the practical implementation of direct recycling, ranging from disassembling, sorting, and separation to technological limitations. Furthermore, potential solutions are suggested to tackle these challenges in the short term. The need for long-term, collaborative endeavors among manufacturers, battery producers, and recycling companies is outlined to advance fully automated recycling of spent LIBs. Lastly, a smart direct recycling framework is proposed to achieve the full life cycle sustainability of LIBs.

2.
Chem Asian J ; 18(18): e202300557, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37553862

ABSTRACT

Hydrothermal-based direct regeneration of spent Li-ion battery (LIB) cathodes has garnered tremendous attention for its simplicity and scalability. However, it is heavily reliant on manual disassembly to ensure the high purity of degraded cathode powders, and the quality of regenerated materials. In reality, degraded cathodes often contain residual components of the battery, such as binders, current collectors, and graphite particles. Thorough investigation is thus required to understand the effects of these impurities on hydrothermal-based direct regeneration. In this study, we focus on isolating the effects of aluminum (Al) scraps on the direct regeneration process. We found that Al metal can be dissolved during the hydrothermal relithiation process. Even when the cathode material contains up to 15 wt.% Al scraps, no detrimental effects were observed on the recovered structure, chemical composition, and electrochemical performance of the regenerated cathode material. The regenerated NCM cathode can achieve a capacity of 163.68 mAh/g at 0.1 C and exhibited a high-capacity retention of 85.58 % after cycling for 200 cycles at 0.5 C. Therefore, the hydrothermal-based regeneration method is effective in revitalizing degraded cathode materials, even in the presence of notable Al impurity content, showing great potential for industrial applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...