Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Natl Sci Rev ; 11(3): nwae009, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38344115

ABSTRACT

Enhancing the thermoelectric transport properties of conductive polymer materials has been a long-term challenge, in spite of the success seen with molecular doping strategies. However, the strong coupling between the thermopower and the electrical conductivity limits thermoelectric performance. Here, we use polaron interfacial occupied entropy engineering to break through this intercoupling for a PEDOT:PSS (poly(3,4-ethylenedioxythiophene)-poly(4-styrenesulfonate)) thin film by using photochromic diarylethene (DAE) dopants coupled with UV-light modulation. With a 10-fold enhancement of the thermopower from 13.5 µV K-1 to 135.4 µV K-1 and almost unchanged electrical conductivity, the DAE-doped PEDOT:PSS thin film achieved an extremely high power factor of 521.28 µW m-1 K-2 from an original value of 6.78 µW m-1 K-2. The thermopower was positively correlated with the UV-light intensity but decreased with increasing temperature, indicating resonant coupling between the planar closed DAE molecule and PEDOT. Both the experiments and theoretical calculations consistently confirmed the formation of an interface state due to this resonant coupling. Interfacial entropy engineering of polarons could play a critical role in enhancing the thermoelectric performance of the organic film.

2.
ACS Nano ; 18(6): 4944-4956, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38301227

ABSTRACT

A breakthrough in the performance of bionic optical structures will only be achieved if we can obtain an in-depth understanding of the synergy mechanisms operating in natural optical structures and find ways to imitate them. In this work, inspired by feline eyes, an optical substrate that takes advantage of a synergistic effect that occurs between resonant and reflective structures was designed. The synergistic effect between the reflective and resonant components leads to a Raman enhancement factor (EF) of 1.16 × 107, which is much greater than that achieved using the reflective/resonant cavities on their own. Finite-difference time-domain (FDTD) simulations and experimental results together confirm that the mechanism of this synergistic effect is achieved by realizing multiple reflections and repeated absorptions of light, generating a strong local electric field. Thus, a 2-3 order of magnitude increase in sensitivity could be achieved. More importantly, with the homemade centrifugal device, above optical substrates were further used to develop a rapidly highly sensitive household health monitoring system (detection time <3 min). It can thus be used to give early warning of acute diseases with high risk (e.g., acute myocardial infarction (AMI) and cerebral peduncle). Due to the good reusability and storability (9% and 8% reduction in EF after washing 30 times and 9 months of storage, respectively) of the substrates, the substrates thus reduce detection costs (to ∼$1), making them much cheaper to use than the current gold-standard methods (e.g., ∼$16 for gout detection).


Subject(s)
Spectrum Analysis, Raman , Cats , Animals , Humans , Spectrum Analysis, Raman/methods , Chronic Disease
3.
Adv Mater ; 36(21): e2313639, 2024 May.
Article in English | MEDLINE | ID: mdl-38353607

ABSTRACT

Studying the phosphorescent mechanisms of carbon nanostructures synthesized by the "bottom-up" approach is key to understanding the structure modulation and the interfacial properties of carbon nanostructures. In this work, the relationships among symmetry of precursors in the "bottom-up" synthesis, structures of products, and phosphorescence lifetimes of graphene quantum dots (GQDs) are studied. The symmetry matching of precursors in the formation of a D6h graphene-like framework is considered the key factor in controlling the separability of sp2 domains in GQDs. As the separability of sp2 domains in GQDs increases, the phosphorescence lifetimes (14.8-125.5 ms) of GQDs in the solid state can be tuned. Machine learning is used to define the degree of disorder (S) of the GQD structure, which quantitatively describes the different space groups of precursors. The negative correlation between S and the oscillator strength of GQDs is uncovered. Therefore, S can be recognized as reflective of oscillator strength in the GQD structure. Finally, based on the correlations found between the structures and phosphorescence lifetimes of GQDs, GQDs with an ultralong phosphorescence lifetime (28.5 s) are obtained. Moreover, GQDs with visible phosphorescence emission (435-618 nm) are synthesized.

4.
ACS Appl Mater Interfaces ; 15(17): 21537-21548, 2023 May 03.
Article in English | MEDLINE | ID: mdl-37084318

ABSTRACT

High-performance organic semiconductors (OSCs) can be designed based on the identification of functional units and their role in the material properties. Herein, we present a polymer-unit fingerprint (PUFp) generation framework, "Python-based polymer-unit-recognition script" (PURS), to identify the subunits "polymer unit" in the polymer and generate polymer-unit fingerprint (PUFp). Using 678 collected OSC data, machine learning (ML) models can be used to determine structure-mobility relationships by using PUFp as a structural input, and the classification accuracy reaches 85.2%. A polymer-unit library consisting of 445 units is constructed, and the key polymer units affecting the mobility of OSCs are identified. By investigating the combinations of polymer units with mobility performance, a scheme for designing OSCs by combining ML approaches and PUFp information is proposed. This scheme not only passively predicts OSC mobility but also actively provides structural guidance for high-mobility OSC material design. The proposed scheme demonstrates the ability to screen materials through pre-evaluation and classification ML steps and is an alternative methodology for applying ML in high-mobility OSC discovery.

5.
RSC Adv ; 12(50): 32508-32517, 2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36425722

ABSTRACT

Herein, we demonstrate the use of large-scale reactive molecular dynamics simulations to identify the influence of nanostructures, size effects, and temperature for the decomposition processes of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX). The bulk-phase and six types of HMX nanoparticle (30-70 Å) systems were investigated at two high temperatures (2000 K and 3000 K). The evolution of the potential energy (PE) and total number of molecules (TM) of HMX crystals and their six nanoparticle systems were analyzed and addressed, and it was revealed that the nanostructure has a great accelerative effect on the thermal decomposition of HMX. The temperature distribution, initial decomposition process, and main intermediate and gas products were traced, and showed that the initial decomposition of HMX nanoparticles is triggered by the dissociation of the N-NO2 bond. With the increase in temperature, the total amount of gas molecules in HMX nanoparticles rapidly increases, which shows that the high temperature can accelerate the decomposition rate for HMX nanoparticles.

6.
ACS Appl Mater Interfaces ; 14(12): 14764-14773, 2022 Mar 30.
Article in English | MEDLINE | ID: mdl-35306813

ABSTRACT

Three-dimensional graphene (3D-graphene) is used in surface-enhanced Raman spectroscopy (SERS) because of its plasmonic nanoresonator structure and good ability to interact with light. However, a thin (3-5 nm) layer of amorphous carbon (AC) inevitably appears as a template layer between the 3D-graphene and object substrate when the 3D-graphene layer is synthesized, weakening the enhancement factor. Herein, two-dimensional graphene (2D-graphene) is employed as a template layer to directly synthesize 3D-graphene on a germanium (Ge) substrate via plasma-assisted chemical vapor deposition, bypassing the formation of an AC layer. The interaction and photoinduced charge transfer ability of the 3D-graphene/Ge heterojunction with incident light are improved. Moreover, the high density of electronic states close to the Fermi level of the heterojunction induces the adsorbed probe molecules to efficiently couple to the 3D-graphene-based SERS substrate. Our experimental results imply that the lowest concentrations of rhodamine 6G and rhodamine B that can be detected on the 3D/2D-graphene/Ge SERS substrate correspond to 10-10 M; for methylene blue, it is 10-8 M. The detection limits of the 3D/2D-graphene/Ge SERS substrate with respect to 3-hydroxytyramine hydrochloride and melamine (in milk) are both less than 1 ppm. This work may provide a viable and convenient alternative method for preparing 3D-graphene SERS substrates. It also constitutes a new approach to developing SERS substrates with remarkable performance levels.

SELECTION OF CITATIONS
SEARCH DETAIL
...