Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 13: 919409, 2022.
Article in English | MEDLINE | ID: mdl-35937344

ABSTRACT

Riparian plants are exposed to harmful stress induced by flooding, which is often accompanied by eutrophication in the Three Gorges Reservoir Region. The phenomenon is mainly caused by domestic sewage discharges, slow water flow, and agricultural fertilizer pollution. Simulating abiotic stress, such as flooding at the initial period, can act as a signal and induce positive responses of plants to subsequent severe stress. In addition, eutrophication supplies nutrients, provides a favorable environment in the early stages of plant, and facilitates good performance in later development. However, whether early flooding (with or without eutrophication) acts as positive cue or as stress on plants at different developmental stages remains unclear. To address this question, seeds of Polygonum hydropiper were collected from low and high elevations in the hydro-fluctuation belt of the Three Gorges Reservoir Region. Plants germinated from these seeds were subjected to shallower and shorter early flooding treatments with or without eutrophication. Subsequently, plants were subjected to deeper and longer flooding treatments with or without eutrophication. Early flooding and eutrophic flooding significantly induced generation of adventitious roots, suggesting morphological adaptation to flooding. Although early flooding and eutrophic flooding treatments did not increase plant biomass in subsequent treatments compared with control, stem length, length and width of the 1st fully expanded leaf, and biomass of plants in the early eutrophic treatment were higher than these of the early flooding treatment plants. These results suggest a negative lag-effect of early flooding, and also indicate that nutrient inputs can alleviate such effects. Similarly, subsequent eutrophic flooding also enhanced plant growth compared with subsequent flooding, showing significantly higher values of leaf traits and adventitious root number. Plants originated from low elevation had significantly higher functional leaf length and stem biomass compared with those from high elevation. These results suggest that nutrient inputs can alleviate negative effects of early and subsequent flooding on growth of P. hydropiper with the generation of adventitious roots.

2.
PLoS One ; 14(7): e0220231, 2019.
Article in English | MEDLINE | ID: mdl-31344145

ABSTRACT

Fluctuation range and frequency are two important components of water level fluctuation, but their effects on wetland plants have not been evaluated separately. We subjected eight wetland species to a control treatment with static water level and fluctuation treatments with different ranges or frequencies to examine their effects on plant growth. Acorus calamus, Butomus umbellatus and Iris wilsonii showed high survival rates in all treatments with various fluctuation ranges and frequencies. Their survival rates were higher at the medium fluctuation frequency than at the low and high frequencies, suggesting beneficial effects of the medium frequency. In the experiment comparing the fluctuation ranges, A. calamus and I. wilsonii could maintain the capacity for asexual propagation and accumulate higher biomass compared with the control plants, while biomass of the other six species dramatically decreased. In the experiment comparing fluctuation frequency, species with relatively high survival rates (≥ 50%) maintained or increased the capacity of asexual propagation, and A. calamus and I. wilsonii allocated relatively more biomass to roots, which may enhance plant growth and survival. In contrast, these species did not show increased biomass allocation to shoots in response to both fluctuation range and frequency, presumably because shoots are prone to mechanical damage caused by streaming floodwater. Taken together, biomass accumulation in roots rather than in shoots and the ability to asexually propagate are important for the survival of these species during water fluctuation.


Subject(s)
Biological Clocks/physiology , Plant Development/physiology , Water/physiology , Wetlands , Acorus/growth & development , Acorus/physiology , Biomass , Ecosystem , Iris Plant/growth & development , Iris Plant/physiology , Nitrogen/chemistry , Plant Roots/cytology , Plant Roots/growth & development , Plants/chemistry , Plants/metabolism , Species Specificity , Tidal Waves , Tissue Survival
SELECTION OF CITATIONS
SEARCH DETAIL
...