Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mater Horiz ; 10(11): 4882-4891, 2023 10 30.
Article in English | MEDLINE | ID: mdl-37602807

ABSTRACT

Double-network (DN) gels are unique mechanochemical materials owing to their structures that can be dynamically remodelled during use. The mechanical energy applied to DN gels is efficiently transferred to the chemical bonds of the brittle network, generating mechanoradicals that initiate the polymerisation of pre-loaded monomers, thereby remodelling the materials. To attain continuous remodelling or growth in response to repetitive mechanical stimuli, a sustainable supply of chemical reagents to such dynamic materials is essential. In this study, inspired by the vascular perfusion transporting nutrients to cells, we constructed a circulatory system for a continuous supply of chemicals to channel-containing DN hydrogels (c-DN gels). The perfusion of monomer solutions through the channel and permeability of the c-DN gels not only replenishes the monomers consumed by the polymerisation but also replenishes the water loss caused by the surface evaporation of hydrogel, thereby freeing the mechanochemical process of DN gels from the constraints of the underwater environment. The facile chemical supply enabled us to modulate the mechanical enhancement of the c-DN gel and attain muscle-like strengthening under repeated mechanical training in deoxygenated air. We also studied the kinetics of polymer growth and strengthening and deciphered unique features of mechanochemical reaction in DN gels including the extremely long-living radicals and delayed mechanical strengthening.


Subject(s)
Hydrogels , Polymers , Polymers/chemistry , Perfusion
2.
Adv Mater ; 33(40): e2103174, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34418193

ABSTRACT

High-strength and reversible adhesion technology, which is a universal phenomenon in nature but remains challenging for artificial synthesis, is essential for the development of modern science. Existing adhesive designs without interface versatility hinder their application to arbitrary surfaces. Bioinspired by creeper suckers, a crystal-fiber reinforced polymer gel adhesive with ultrastrong adhesion strength and universal interface adaptability is creatively prepared via introducing a room-temperature crystallizable solvent into the polymer network. The gel adhesive formed by hydrogen bonding interaction between crystal fibers and polymer network can successfully realize over 9.82 MPa reversible adhesion strength for rough interface and 406.87 J m-2 peeling toughness for skin tissue. In situ anchoring is achieved for adapting to different geometrical surfaces. The adhesion performance can be significantly improved with the further increase of the interfacial roughness and hydrophilicity, whose dissipation mechanism is simulated by finite element analysis. The melting-crystallization equilibrium of the crystal fibers is proved by synchrotron radiation scattering. Accordingly, reversible phase-transition triggered by light and heat can realize the controlled adhere-detach recycle. Later adjustments to the monomers or crystals are expected to broaden its applications to various fields such as bioelectronics, electronic processing, and machine handling.


Subject(s)
Adhesives/chemistry , Gels/chemistry , Polymers/chemistry , Crystallization , Hydrophobic and Hydrophilic Interactions , Imidazoles/chemistry , Temperature , Ultraviolet Rays
3.
Small ; 16(44): e2004091, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33051993

ABSTRACT

Although plenty of progress and achievements are made on hydrogel electrolyte researches, the inherent inferior low-temperature performance of hydrogel electrolyte is still a severe challenge for wider application on the energy storage devices, due to the high content of water within hydrogel. Herein, an enhanced solar-driven-heating composite hydrogel electrolyte and a solar-driven-heating graphene based micro-supercapacitor are developed utilizing the photothermal conversion ability and self-initiation of MoS2 nanosheets and additional Hofmeister effect. The MoS2 composite hydrogel electrolyte not only improves the reliability of micro-supercapacitor owing to its splendid mechanical properties, but also endows the micro-supercapacitor with superior low-temperature electrochemical performance and broadens its operating environment to a much lower temperature (-56 °C), which should be attributed to the excellent ability in converting endless solar energy into required thermal energy. These efforts would construct a new application platform for solar energy conversion and present an efficient method to structure severe-cold resistant solid state energy storage devices for next-generation.

4.
Adv Mater ; 31(30): e1900248, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31183940

ABSTRACT

Although nonliquid electrolytes have been developed rapidly under the condition of safe demand of energy storage devices, the inherent weaknesses in ionic conductivity, mechanical properties, or interfacial compatibility severely hinder their application under a harsh environment. Inspired by the hybridized characteristics of composite materials and the potential advantages of hydrated crystals, a processable crystal-type gel electrolyte with good comprehensive performance via the dissolution-crystallization transition of NaAc within hydrogel is creatively prepared. The use of NaAc crystal within a hydrogel leads to nearly 26 000 times greater modulus (474.24 MPa) and higher operating voltage (2.0 V) than the hydrogel without the crystal. The reliable supercapacitor using this electrolyte can work in extreme environment (-40 to 80 °C, even in the fire or in liquid nitrogen within a short time) benefiting from its phase-transition capacity. This investigation offers a facile and versatile way to construct an ideal gel electrolyte for next-generation energy storage devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...