Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Angew Chem Int Ed Engl ; 63(11): e202320144, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38243691

ABSTRACT

The exploration of annulene's conformation, electronic properties and aromaticity has generated enduring interest over the years, yet it continues to present formidable challenges for annulenes with more than ten carbon atoms. In this study, we present the synthesis of a stable [10]cyclo-para-phenylmethine derivative (1), which bears a resemblance to [10]annulene. 1 can be readily oxidized into its respective cations, wherein electrons are effectively delocalized along the backbone, resulting in different conformations and aromaticity. Both 1 and its tetracation (14+ ⋅ 4SbF6 - ) exhibit a nearly planar conformation with a rectangular shape, akin to the E,Z,E,Z,Z-[10]annulene. In contrast, the radical cation (1⋅+ ⋅ SbCl6 - ) possesses a doubly twisted Hückel topology. Furthermore, the dication (12+ ⋅ 2SbCl6 - ) displays conformational flexibility in solution and crystalizes with the simultaneous presence of Möbius-twisted (1a2+ ⋅ 2SbCl6 - ) and Hückel-planar (1b2+ ⋅ 2SbCl6 - ) isomers in its unit cell. Detailed experimental measurements and theoretical calculations reveal that: (1) 1 demonstrates localized aromaticity with an alternating benzenoid/quinoid structure; (2) 1a2+ ⋅ 2SbCl6 - and 1b2+ ⋅ 2SbCl6 - with 48π electrons are weakly Möbius aromatic and Hückel antiaromatic, respectively; (3) 14+ ⋅ 4SbF6 - exhibits Hückel aromaticity (46π) and open-shell diradical character.

2.
ACS Nano ; 17(20): 20237-20245, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37791737

ABSTRACT

The atomic doping of open-shell nanographenes enables precise tuning of their electronic and magnetic states, which is crucial for their promising potential applications in optoelectronics and spintronics. Among this intriguing class of molecules, triangulenes stand out with their size-dependent electronic properties and spin states, which can also be influenced by the presence of dopant atoms and functional groups. However, the occurrence of Jahn-Teller distortions in such systems can have a crucial impact on their total spin and requires further theoretical and experimental investigation. In this study, we examine the nitrogen-doped aza-triangulene series via a combination of density functional theory and on-surface synthesis. We identify a general trend in the calculated spin states of aza-[n]triangulenes of various sizes, separating them into two symmetry classes, one of which features molecules that are predicted to undergo Jahn-Teller distortions that reduce their symmetry and thus their total spin. We link this behavior to the location of the central nitrogen atom relative to the two underlying carbon sublattices of the molecules. Consequently, our findings reveal that neutral centrally doped aza-triangulenes have one less radical than their undoped counterparts, irrespective of their predicted symmetry. We follow this by demonstrating the on-surface synthesis of π-extended aza-[5]triangulene, a large member of the higher symmetry class without Jahn-Teller distortions, via a simple one-step annealing process on Cu(111) and Au(111). Using scanning probe microscopy and spectroscopy combined with theoretical calculations, we prove that the molecule is positively charged on the Au(111) substrate, with a high-spin quintet state of S = 2, the same total spin as undoped neutral [5]triangulene. Our study uncovers the correlation between the dopant position and the radical nature of high-spin nanographenes, providing a strategy for the design and development of these nanographenes for various applications.

3.
Angew Chem Int Ed Engl ; 62(45): e202311928, 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37735099

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) with a one-dimensional (1D), ribbon-like structure have the potential to serve as both model compounds for corresponding graphene nanoribbons (GNRs) and as materials for optoelectronics applications. However, synthesizing molecules of this type with extended π-conjugation presents a significant challenge. In this study, we present a straightforward synthetic method for a series of bis-peri-dinaphtho-rylene molecules, wherein the peri-positions of perylene, quaterrylene, and hexarylene are fused with naphtho-units. These molecules were efficiently synthesized primarily through intramolecular or intermolecular radical coupling of in situ generated organic radical species. Their structures were confirmed using X-ray crystallographic analysis, which also revealed a slightly bent geometry due to the incorporation of a cyclopentadiene ring at the bay regions of the rylene backbones. Bond lengh analysis and theoretical calculations indicate that their electronic structures resemble pyrenacenes more than quinoidal rylenes. That is, the aromatic sextets are predominantly localized along the long axis of the skeletones. As the chain length increases, these molecules exhibit enhanced electronic absorption with a bathochromic shift, and multiple amphoteric redox waves. This study introduces a novel synthetic approach for generating 1D extended PAHs and GNRs, along with their structure-dependent electronic properties.

4.
Chem Sci ; 14(29): 7922-7927, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37502331

ABSTRACT

Twisted polyarenes with persistent chirality are desirable but their synthesis has remained a challenge. In this study, we present a "one-pot" synthesis of 1,2:8,9-dibenzozethrene (DBZ) and its vertically fused dimers and trimers using nickel-catalyzed cyclo-oligomerization reactions. X-ray crystallographic analysis confirmed highly twisted helical structures that consist of equal parts left- and right-handed enantiomers. Notably, the end-to-end twist between the terminal anthracene units measured 66°, 130°, and 201° for the DBZ monomer, dimer, and trimer, respectively, setting a new record among twisted polyarenes. Furthermore, the chiral resolution by HPLC yielded two enantiomers for the fused DBZ dimer and trimer, both of which maintained stable configurations and showed absorption dissymmetry factors of around 0.008-0.009. Additionally, their optical and electrochemical properties were investigated, which exhibited a chain-length dependence.

5.
Angew Chem Int Ed Engl ; 62(35): e202306938, 2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37338045

ABSTRACT

Circumacenes (CAs) are a distinctive type of benzenoid polycyclic aromatic hydrocarbons where an acene unit is completely enclosed by a layer of outer fused benzene rings. Despite their unique structures, the synthesis of CAs is challenging, and until recently, the largest CA molecule synthesized was circumanthracene. In this study, we report the successful synthesis of an extended circumpentacene derivative 1, which represents the largest CA molecule synthesized to date. Its structure was confirmed by X-ray crystallographic analysis and its electronic properties were systematically investigated by both experiments and theoretical calculations. It shows a unique open-shell diradical character due to the existence of extended zigzag edges, with a moderate diradical character index (y0 =39.7 %) and a small singlet-triplet energy gap (ΔES-T =-4.47 kcal/mol). It exhibits a dominant local aromatic character with π-electrons delocalized in the individual aromatic sextet rings. It has a small HOMO-LUMO energy gap and displays amphoteric redox behavior. The electronic structures of its dication and dianion can be considered as doubly charged structures in which two coronene units are fused with a central aromatic benzene ring. This study provides a new route toward stable multizigzag-edged graphene-like molecules with open-shell di/polyradical character.

6.
Angew Chem Int Ed Engl ; 62(38): e202304937, 2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37387478

ABSTRACT

Polycyclic hydrocarbons consisting of two or more directly fused antiaromatic subunits are rare due to their high reactivity. However, it is important to understand how the interactions between the antiaromatic subunits influence the electronic properties of the fused structure. Herein, we present the synthesis of two fused indacene dimer isomers: s-indaceno[2,1-a]-s-indacene (s-ID) and as-indaceno[3,2-b]-as-indacene (as-ID), containing two fused antiaromatic s-indacene or as-indacene units, respectively. Their structures were confirmed by X-ray crystallographic analysis. 1 H NMR/ESR measurements and DFT calculations revealed that both s-ID and as-ID have an open-shell singlet ground state. However, while localized antiaromaticity was observed in s-ID, as-ID showed weak global aromaticity. Moreover, as-ID exhibited a larger diradical character and a smaller singlet-triplet gap than s-ID. All the differences can be attributed to their distinct quinoidal substructures.

7.
Angew Chem Int Ed Engl ; 62(27): e202304197, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37133456

ABSTRACT

Large graphene-like molecules with four zigzag edges are ideal gain medium materials for organic near-infrared (NIR) lasers. However, synthesizing them becomes increasingly challenging as the molecular size increases. In this study, we introduce a new intramolecular radical-radical coupling approach and successfully synthesize two fused triangulene dimers (1 a/1 b) efficiently. X-ray crystallographic analysis of 1 a indicates that there is no intermolecular π-π stacking in the solid state. When the more soluble derivative 1 b is dispersed in polystyrene thin films, amplified spontaneous emission in the NIR region is observed. Using 1 b as the active gain material, we fabricate solution-processed distributed feedback lasers that exhibit a narrow emission linewidth at around 790 nm. The laser devices also exhibit low thresholds with high photostability. Our study provides a new synthetic strategy for extended nanographenes, which have diverse applications in electronics and photonics.

8.
Chem Sci ; 14(15): 4158-4165, 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37063807

ABSTRACT

We report here a novel family of boraolympicenes, structurally featuring boron-doping at the concave 11a-position of their π-skeletons and synthetically prepared via a facile one-pot triply borylation-based double-fold borocyclization reaction. Despite having no bulky protecting groups, these boraolympicenes exhibit excellent chemical stability against air and moisture, ascribed to the significant π-electron delocalization over the vacant p z orbitals of boron atoms as evidenced by both single-crystallographic and theoretical analyses. More importantly, the modular synthesis of these boraolympicenes allows the fine-tuning of their physicochemical properties, endowing them with intriguing electronic features, such as intense visible-to-NIR absorption and low-lying LUMO energy levels (∼-3.8 eV) as well as tunable molecular stacking characteristics in the crystalline state. As a model compound, a radical-anion salt of 6-phenyl-11a-boraolympicene was further generated through chemical reduction and well characterized by UV-vis-NIR absorption, ESR, and IR spectroscopy. This radical anion salt is sensitive to air and moisture but shows persistent stability under inert conditions benefiting from its stable borataalkene-containing resonant form.

9.
Angew Chem Int Ed Engl ; 62(19): e202301041, 2023 May 02.
Article in English | MEDLINE | ID: mdl-36876629

ABSTRACT

Circumcoronene, a hexagonal graphene fragment with six zigzag edges, has been the focus of theoretical studies for many years, but its synthesis in solution has remained a challenge. In this study, we present a facile method for synthesizing three derivatives of circumcoronene using Brønsted/Lewis acid-mediated cyclization of vinyl ether or alkyne. Their structures were confirmed through X-ray crystallographic analysis. Bond length analysis, NMR measurement, and theoretical calculations showed that circumcoronene mostly follows Clar's bonding model and exhibits dominant local aromaticity. Its absorption and emission spectra are similar to those of the smaller hexagonal coronene due to its six-fold symmetry.

10.
Article in English | MEDLINE | ID: mdl-36231274

ABSTRACT

Faced with the real demand of manufacturing industry to achieve the goal of green and high-quality development, exploring spatiotemporal heterogeneity and the spatial spillover effect of green manufacturing efficiency under environmental regulation can help reveal the path and mechanism of green development in the manufacturing industry. By using the SBM-DEM model to measure green manufacturing efficiency at the urban scale in China, exploratory spatial analysis is used to characterize the spatiotemporal differentiation of urban green manufacturing efficiency from 2003 to 2018. With the help of the spatial Durbin model, the impact of environmental regulation on green manufacturing efficiency and the spatial spillover effect are demonstrated. The results show that: (1) The green manufacturing efficiency of cities has developed in a gradual and balanced manner in time series, and the degree of equalization is stronger in the eastern coast than in the western inland; (2) Urban green manufacturing efficiency patterns are misaligned with economic scale patterns, indicating that green manufacturing is not traditionally dominated by economic factor inputs; (3) The practice of Chinese cities has proved that environmental regulation can significantly inhibit the development of green manufacturing efficiency in local cities. The crowding-out effect and optimization effect of environmental regulation on other external factors indirectly affect green development. By comparing different spatial weight matrices, it is shown that the economic relationship between cities can offset the inhibition of environmental regulation; (4) Although environmental regulation under spatial interaction would have significantly contributed to the green manufacturing efficiency of neighboring cities, this contribution effect is insignificant and weak due to the economic interactions between cities. Empirical research provides a theoretical foundation for the development of green manufacturing from the standpoint of environmental regulation, allowing green development research in manufacturing to move further.


Subject(s)
Commerce , Manufacturing Industry , China , Cities , Economic Development , Efficiency
11.
Angew Chem Int Ed Engl ; 61(40): e202210386, 2022 Oct 04.
Article in English | MEDLINE | ID: mdl-36000462

ABSTRACT

Synthesis of triangulene and its derivatives is challenging due to their intrinsic high spin nature. Herein, we report solution-phase synthesis and isolation of a nitrogen-doped triangulene (i.e., aza-triangulene) (NT) and its cation (NT+ ) in single-crystal form. Notably, the cation NT+ can be regarded as an isoelectronic structure of the corresponding all-carbon triangulene. Both NT and NT+ show reasonable stability due to kinetic blocking by bulky and electron-withdrawing aryl substituents, and intramolecular donor-acceptor interaction. Bond length analysis, magnetic measurements and theoretical calculations reveal that the neutral NT has a doublet ground state with a zwitterionic character, while the cation NT+ exhibits a triplet ground state with a singlet-triplet energy gap of +0.84 kcal mol-1 . This study provides a rational strategy to access high-spin systems by heteroatom doping of pure π-conjugated polycyclic hydrocarbons.

12.
Chemistry ; 28(31): e202200687, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35319794

ABSTRACT

The incorporation of organic radicals into coordination polymers was considered as a promising strategy to promote metal-ligand exchange interactions, but there are only a very limited number of stable organic radical-based ligands that can serve well such a purpose. Herein, we report two new tris(2,4,6-trichlorophenyl)methyl (TTM) radical-based ligands L1 and L2 with two and three imidazole substituents, respectively. The imidazole unit serves as a coordination site and it can also stabilize the TTM radical by intramolecular donor-acceptor interaction. Coordination of L1 and L2 with cobalt(II) ions gave the corresponding one- (CoCP-1) and two-dimensional (CoCP-2) coordination polymers, the structures of which were confirmed by X-ray crystallographic analysis. Magnetic measurements and theoretical calculations suggest antiferromagnetic coupling between the paramagnetic cobalt(II) ions and the radical ligands. Our study provides a rational design for stable organic radical-based ligands and further demonstrated the feasibility of a metal-radical approach toward magnetic materials.

13.
J Org Chem ; 86(23): 16573-16581, 2021 12 03.
Article in English | MEDLINE | ID: mdl-34726916

ABSTRACT

Enantioselective ring-contraction reactions have not been widely reported. We have developed an enantioselective ring contraction of 5,6-dihydro-2H-benzo[b][1,4]oxazocines, affording enantiomerically enriched 3,4-dihydro-2H-1,4-benzoxazine derivatives as single regioisomers. An acidic additive is necessary in order to obtain the products with good yields and enantiomeric ratios (up to 93% yield, 98:2 er). The reaction was successfully performed on a gram scale, and the products can be derivatized easily.


Subject(s)
Benzoxazines , Catalysis , Stereoisomerism
14.
J Immunol Res ; 2021: 7223500, 2021.
Article in English | MEDLINE | ID: mdl-34395634

ABSTRACT

Distinct expression of the miRNAs has rarely been explored in basal cell carcinoma (BCC) of skin, and the regulatory role of miRNAs in BCC development remains quite opaque. Here, we collected control tissues from adjacent noncancerous skin (n = 15; control group) and tissues at tumor centers from patients with cheek BCC (n = 15; BCC group) using punch biopsies. After six small RNA sequencing- (sRNA-seq-) based miRNA expression profiles were generated for both BCC and controls, including three biological replicates, we conducted comparative analysis on the sRNA-seq dataset, discovering 181 differentially expressed miRNAs (DEMs) out of the 1,873 miRNAs in BCCs. In order to validate the sRNA-seq data, expression of 15 randomly selected DEMs was measured using the TaqMan probe-based quantitative real-time PCR. Functional analysis of predicted target genes of DEMs in BCCs shows that these miRNAs are primarily involved in various types of cancers, immune response, epithelial growth, and morphogenesis, as well as energy production and metabolism, indicating that BCC development is caused, at least in part, by changes in miRNA regulation for biological and disease processes. In particular, the "basal cell carcinoma pathways" were found to be enriched by predicted DEM targets, and regulatory relationships between DEMs and their targeted genes in this pathway were further uncovered. These results revealed the association between BCCs and abundant miRNA molecules that regulate target genes, functional modules, and signaling pathways in carcinogenesis.


Subject(s)
Carcinoma, Basal Cell/genetics , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , Transcriptome , Biomarkers, Tumor , Computational Biology/methods , Disease Susceptibility , Gene Expression Profiling/methods , Gene Regulatory Networks , Genome-Wide Association Study/methods , High-Throughput Nucleotide Sequencing , Humans , Molecular Sequence Annotation , RNA Interference , RNA, Messenger/genetics
15.
Chem Sci ; 12(27): 9366-9371, 2021 Jul 14.
Article in English | MEDLINE | ID: mdl-34349908

ABSTRACT

The classical synthesis of quinoids, which involves Takahashi coupling and subsequent oxidation, often gives only low to medium yields. Herein, we disclose the keto-enol-tautomerism-assisted spontaneous air oxidation of the coupling products to quinoids. This allows for the synthesis of various indandione-terminated quinoids in high isolated yields (85-95%). The origin of the high yield and the mechanism of the spontaneous air oxidation were ascertained by experiments and theoretical calculations. All the quinoidal compounds displayed unipolar n-type transport behavior, and single crystal field-effect transistors based on the micro-wires of a representative quinoid delivered an electron mobility of up to 0.53 cm2 V-1 s-1, showing the potential of this type of quinoid as an organic semiconductor.

16.
ACS Appl Mater Interfaces ; 11(47): 44352-44359, 2019 Nov 27.
Article in English | MEDLINE | ID: mdl-31670939

ABSTRACT

The porous structure composed of non-metal elements of covalent organic frameworks (COFs) contributes to a large surface area and multifunction, rendering COFs a brilliant material for energy storage. Unfortunately, the low conductivity of most COFs limits their application in batteries. Herein, we fabricate COF-derived nitrogen-doped porous carbon (NPC) using nitrogen-rich COF-JLU2 as precursors by a simple carbonization for potassium-ion batteries (PIBs) and aluminum (Al) batteries for the first time. The computational results suggest that NPC has an enhanced conductivity and optimized electron density distribution. NPC could overcome the low conductivity of COF and thus further optimize its electrochemical performance in PIBs and Al batteries. It displays an excellent stability even after 2500 cycles (as the anode for PIBs) and 30000 cycles (as the cathode for Al batteries) with a high Coulombic efficiency. This fascinating study may be extended in other COFs for energy storage applications.

17.
Anal Chim Acta ; 1065: 134-141, 2019 Aug 13.
Article in English | MEDLINE | ID: mdl-31005146

ABSTRACT

A novel ratiometric and reversible chemosensor 4-((2-(Benzo[d]thiazol-2-yl)phenyl)ethynyl)-N,N-diethylaniline (BT-1) based on ortho-arylethynyl benzothiazole with large Stokes shift (Δλ≈190 nm) was designed and synthesized to recognize Cu2+. Copper ion induces a remarkable fluorescence enhancement and causes formation of a BT-1-Cu complex. The clamp-on coordination mode of BT-1 to Cu2+ was demonstrated using Job's plot, mass spectrum (MS) and DFT calculations. The calculations also indicate that Cu2+ was chelated to BT-1 through N and alkyne instead of S and alkyne. The probe could quantify Cu2+ with the detection limit of 3.2 × 10-9 M. The in vitro imaging results indicated that the probe BT-1 was membrane-permeable and could be applied into the recognition of Cu2+ ions in living cells.


Subject(s)
Copper/analysis , Fluorescent Dyes/chemistry , Density Functional Theory , Fluorescence , Fluorescent Dyes/chemical synthesis , Hep G2 Cells , Humans , Mass Spectrometry , Optical Imaging , Spectrometry, Fluorescence
18.
Chem Commun (Camb) ; 54(19): 2389-2392, 2018 Mar 07.
Article in English | MEDLINE | ID: mdl-29457175

ABSTRACT

Open-shell π-conjugated compounds have recently received intense attention due to their unique properties and promising applications in materials science. However, the experiments on how the substituents affect their chemical bonding and structural motif remain less addressed. In this work, a series of tetrabenzo-Chichibabin's hydrocarbon (TBC) derivatives substituted by different electron-donating or -withdrawing groups at the termini were synthesized. The substituent effect was studied via X-ray crystallographic analysis. The strong electron-donating dimethylamino-group substituted TBC derivative underwent simultaneous oxidation to give two cyanine-like moieties at the termini. More interestingly, it exhibited unusual thermochromic and thermomagnetic behaviours.

20.
J Am Chem Soc ; 139(44): 15760-15767, 2017 11 08.
Article in English | MEDLINE | ID: mdl-29025264

ABSTRACT

Despite the great potential of heteroatom-containing polycyclic aromatic hydrocarbons in organic optoelectronics, there are very limited reports on heteroaromatics containing a B-N-B bond in the π-scaffold. Herein, stable 1,9-dibora-9a-azaphenalenyl (DBAP) derivatives, named BNB-embedded phenalenyls, are presented. The DBAP skeleton contains a three-center two-π-electron B-N-B moiety with 12 π-electrons and can be regarded as the isoelectronic structure of the phenalenyl cation. Chemical reduction of the phenyl derivative of DBAP by potassium generated the dianion containing 14 delocalized π-electrons, which can be regarded as the isoelectronic structure of the phenalenyl anion. The dianion is sandwiched and stabilized by two bulky [K([18]crown-6)]+ counterions according to its X-ray structure. However, its monoanion (an isoelectronic structure of the henalenyl radical) generated by mixing equal moles of neutral compound and dianion gave an unusual B-N-B-embedded benzo[cd]fluoranthene dianion, which again was confirmed by X-ray crystallographic analysis. The new dianion containing 20 π-electrons is highly aromatic and is further stabilized by [K([18]crown-6)]+ counterions. An aromaticity driven rearrangement mechanism was proposed for this unusual transformation. Based on X-ray structures and theoretical calculations, the B-N-B moiety in the neutral and anionic DBAP participates in the π-electron delocalization along the whole DBAP skeleton like their phenalenyl cation/radical/anion counterparts, but with more localized character. Therefore, our studies report the first synthesis and characterization of a B-N-B-embedded phenalenyl and its anionic species, which show unique electronic structure and unusual reactivity different from that of their all-carbon phenalenyl analogues.

SELECTION OF CITATIONS
SEARCH DETAIL
...