Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(27): 34578-34590, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38946497

ABSTRACT

Meeting the exacting demands of wound healing encompasses rapid coagulation, superior exudate absorption, high antibacterial efficacy, and imperative support for cell growth. In this study, by emulating the intricate structure of natural skin, we prepare a multifunctional porous bilayer artificial skin to address these critical requirements. The bottom layer, mimicking the dermis, is crafted through freeze-drying a gel network comprising carboxymethyl chitosan (CMCs) and gelatin (GL), while the top layer, emulating the epidermis, is prepared via electrospinning poly(l-lactic acid) (PLLA) nanofibers. With protocatechuic aldehyde and gallium ion complexation (PA@Ga) as cross-linking agents, the bottom PA@Ga-CMCs/GL layer featured an adjustable pore size (78-138 µm), high hemostatic performance (67s), and excellent bacterial inhibition rate (99.9%), complemented by an impressive liquid-absorbing capacity (2000% swelling rate). The top PLLA layer, with dense micronanostructure and hydrophobic properties, worked as a shield to effectively thwarted liquid or bacterial penetration. Furthermore, accelerated wound closure, reduced inflammatory responses, and enhanced formation of hair follicles and blood vessels are achieved by the porous artificial skin covered on the surface of wound. Bilayer artificial skin integrates the advantages of nanofibers and freeze-drying porous materials to effectively replicate the protective properties of the epidermal layer of the skin, as well as the cell migration and tissue regeneration of the dermis. This bioabsorbable artificial skin demonstrates structural and functional comparability to real skin, which would advance the field of wound care through its multifaceted capabilities.


Subject(s)
Chitosan , Nanofibers , Skin, Artificial , Wound Healing , Wound Healing/drug effects , Chitosan/chemistry , Chitosan/analogs & derivatives , Porosity , Animals , Nanofibers/chemistry , Polyesters/chemistry , Polyesters/pharmacology , Gelatin/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Mice , Staphylococcus aureus/drug effects , Humans
2.
Macromol Biosci ; : e2300399, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38011585

ABSTRACT

Sustainable and controllable drug transport is one of the most efficient ways of disease treatment. Due to high biocompatibility, good biodegradability, and low costs, chitosan and its derivatives are widely used in biomedical fields. Specifically, chitosan hydrogel enables drugs to pass through biological barriers because of their abundant amino and hydroxyl groups that can interact with human tissues. Moreover, the multi-responsive nature (pH, temperature, ions strength, and magnetic field, etc.) of chitosan hydrogels makes precise drug release a possibility. Here, the synthesis methods, modification strategies, stimuli-responsive mechanisms of chitosan-based hydrogels, and their recent progress in drug delivery are summarized. Chitosan hydrogels that carry and release drugs through subcutaneous (dealing with wound dressing), oral (dealing with gastrointestinal tract), and facial (dealing with ophthalmic, ear, and brain) are reviewed. Finally, challenges toward clinic application and the future prospects of stimuli-responsive chitosan-based hydrogels are indicated.

3.
Phys Chem Chem Phys ; 20(6): 4109-4117, 2018 Feb 07.
Article in English | MEDLINE | ID: mdl-29354833

ABSTRACT

The physicochemical properties including melting point, density, viscosity, conductivity, and surface tension as well as spectral properties such as infrared and EPR spectra of the chelate-based ILs [Cnmim][Cu(F6-acac)3] (n = 6, 8, 10, 12, 14) were studied as functions of temperature and chain length. The thermodynamic properties such as the standard molar entropy and crystal energy were estimated by Glasser's theory, the molar enthalpy of vaporization was calculated by Kabo's method, and the ionicity was estimated by the Walden rule. Compared with the common ILs, the chelate-based ILs have larger molecular volume, larger density, smaller crystal energy, poorer ionicity and larger enthalpy of vaporization. The infrared spectra data of the ILs showed a red shift of the C-H bond stretching vibration of the alkyl chain in the cation and the EPR spectra showed that the crystal field of Cu2+ was kept when the chain length was elongated, which indicated the existence of microphase separation in the ILs. This work is helpful in understanding the structure-property relations of chelate-based ILs for further application.

SELECTION OF CITATIONS
SEARCH DETAIL
...