Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 10952, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38740850

ABSTRACT

It is recognized as a promising therapeutic strategy for cocaine use disorder to develop an efficient enzyme which can rapidly convert cocaine to physiologically inactive metabolites. We have designed and discovered a series of highly efficient cocaine hydrolases, including CocH5-Fc(M6) which is the currently known as the most efficient cocaine hydrolase with both the highest catalytic activity against (-)-cocaine and the longest biological half-life in rats. In the present study, we characterized the time courses of protein appearance, pH, structural integrity, and catalytic activity against cocaine in vitro and in vivo of a CocH5-Fc(M6) bulk drug substance produced in a bioreactor for its in vitro and in vivo stability after long-time storage under various temperatures (- 80, - 20, 4, 25, or 37 °C). Specifically, all the tested properties of the CocH5-Fc(M6) protein did not significantly change after the protein was stored at any of four temperatures including - 80, - 20, 4, and 25 °C for ~ 18 months. In comparison, at 37 °C, the protein was less stable, with a half-life of ~ 82 days for cocaine hydrolysis activity. Additionally, the in vivo studies further confirmed the linear elimination PK profile of CocH5-Fc(M6) with an elimination half-life of ~ 9 days. All the in vitro and in vivo data on the efficacy and stability of CocH5-Fc(M6) have consistently demonstrated that CocH5-Fc(M6) has the desired in vitro and in vivo stability as a promising therapeutic candidate for treatment of cocaine use disorder.


Subject(s)
Cocaine , Enzyme Stability , Animals , Cocaine/metabolism , Rats , Hydrolysis , Hydrogen-Ion Concentration , Male , Half-Life , Temperature , Amidohydrolases/metabolism , Carboxylic Ester Hydrolases , Recombinant Proteins
2.
Sci Rep ; 14(1): 927, 2024 01 09.
Article in English | MEDLINE | ID: mdl-38195724

ABSTRACT

Cocaine dependence is a serious world-wide public health problem without an FDA-approved pharmacotherapy. We recently designed and discovered a highly efficient long-acting cocaine hydrolase CocH5-Fc(M6). The present study examined the effectiveness and duration of CocH5-Fc(M6) in blocking interoceptive effects of cocaine by performing cocaine discrimination tests in rats, demonstrating that the duration of CocH5-Fc(M6) in blocking cocaine discrimination was dependent on cocaine dose and CocH5-Fc(M6) plasma concentration. Particularly, a dose of 3 mg/kg CocH5-Fc(M6) effectively attenuated discriminative stimulus effects of 10 mg/kg cocaine, cumulative doses of 10 and 32 mg/kg cocaine, and cumulative doses of 10, 32 and 56 mg/kg cocaine by ≥ 20% for 41, 19, and 10 days, and completely blocked the discriminative stimulus effects for 30, 13, and 5 days with corresponding threshold plasma CocH5-Fc(M6) concentrations of 15.9, 72.2, and 221 nM, respectively, under which blood cocaine concentration was negligible. Additionally, based on the data obtained, cocaine discrimination model is more sensitive than the locomotor activity to reveal cocaine effects and that CocH5-Fc(M6) itself has no long-term toxicity regarding behavioral activities such as lever pressing and food consumption in rats, further demonstrating that CocH5-Fc(M6) has the desired properties as a promising therapeutic candidate for prevenance of cocaine dependence.


Subject(s)
Cocaine-Related Disorders , Cocaine , Animals , Rats , Cocaine-Related Disorders/drug therapy , Cocaine/pharmacology , Carboxylic Ester Hydrolases , Locomotion
3.
Exp Gerontol ; 174: 112132, 2023 04.
Article in English | MEDLINE | ID: mdl-36849001

ABSTRACT

Inflammation is believed to play a role in the progression of numerous human diseases. Research has shown that inflammation and telomeres are involved in a feedback regulatory loop: inflammation increases the rate of telomere attrition, leading to telomere dysfunction, while telomere components also participate in regulating the inflammatory response. However, the specific mechanism behind this feedback loop between inflammatory signaling and telomere/telomerase complex dysfunction has yet to be fully understood. This review presents the latest findings on this topic, with a particular focus on the detailed regulation and molecular mechanisms involved in the progression of aging, various chronic inflammatory diseases, cancers, and different stressors. Several feedback loops between inflammatory signaling and telomere/telomerase complex dysfunction, including NF-κB-TERT feedback, NF-κB-RAP1 feedback, NF-κB-TERC feedback, STAT3-TERT feedback, and p38 MAPK-shelterin complex-related gene feedback, are summarized. Understanding the latest discoveries of this feedback regulatory loop can help identify novel potential drug targets for the suppression of various inflammation-associated diseases.


Subject(s)
Telomerase , Humans , Telomerase/metabolism , NF-kappa B , Feedback , Telomere , Inflammation
4.
Sci Rep ; 13(1): 640, 2023 01 12.
Article in English | MEDLINE | ID: mdl-36635293

ABSTRACT

Cocaine is a widely abused, hepatotoxic drug without an FDA-approved pharmacotherapy specific for cocaine addiction or overdose. It is recognized as a promising therapeutic strategy to accelerate cocaine metabolism which can convert cocaine to pharmacologically inactive metabolite(s) using an efficient cocaine-metabolizing enzyme. Our previous studies have successfully designed and discovered a highly efficient cocaine hydrolase, denoted as CocH5-Fc(M6), capable of rapidly hydrolyzing cocaine at the benzoyl ester moiety. In the present study, we determined the kinetic parameters of CocH5-Fc(M6) against norcocaine (kcat = 9,210 min-1, KM = 20.9 µM, and kcat/KM = 1.87 × 105 min-1 M-1) and benzoylecgonine (kcat = 158 min-1, KM = 286 µM, and kcat/KM = 5.5 × 105 min-1 M-1) for the first time. Further in vivo studies have demonstrated that CocH5-Fc(M6) can effectively accelerate clearance of not only cocaine, but also norcocaine (known as a cocaine metabolite which is more toxic than cocaine itself) and benzoylecgonine (known as an unfavorable long-lasting metabolite with some long-term toxicity concerns) in rats. Due to the desired high catalytic activity against norcocaine, CocH5-Fc(M6) is capable of quickly detoxifying both cocaine and its more toxic metabolite norcocaine after intraperitoneally administering lethal dose of 60 or 180 mg/kg cocaine. In addition, the ability of CocH5-Fc(M6) to accelerate clearance of benzoylecgonine should also be valuable for the use of CocH5-Fc(M6) in treatment of cocaine use disorder.


Subject(s)
Cocaine , Rats , Animals , Rats, Sprague-Dawley , Hydrolysis , Cocaine/metabolism
5.
Front Endocrinol (Lausanne) ; 13: 1024320, 2022.
Article in English | MEDLINE | ID: mdl-36277727

ABSTRACT

Polycystic ovary syndrome (PCOS) is a lifelong reproductive, metabolic, and psychiatric disorder that affects 5-18% of women, which is associated with a significantly increased lifetime risk of concomitant diseases, including type 2 diabetes, psychiatric disorders, and gynecological cancers. Posttranslational modifications (PTMs) play an important role in changes in protein function and are necessary to maintain cellular viability and biological processes, thus their maladjustment can lead to disease. Growing evidence suggests the association between PCOS and posttranslational modifications. This article mainly reviews the research status of phosphorylation, methylation, acetylation, and ubiquitination, as well as their roles and molecular mechanisms in the development of PCOS. In addition, we briefly summarize research and clinical trials of PCOS therapy to advance our understanding of agents that can be used to target phosphorylated, methylated, acetylated, and ubiquitinated PTM types. It provides not only ideas for future research on the mechanism of PCOS but also ideas for PCOS treatments with therapeutic potential.


Subject(s)
Diabetes Mellitus, Type 2 , Polycystic Ovary Syndrome , Female , Humans , Polycystic Ovary Syndrome/complications , Diabetes Mellitus, Type 2/complications , Protein Processing, Post-Translational , Acetylation , Proteins/metabolism
7.
Cell Commun Signal ; 20(1): 61, 2022 05 09.
Article in English | MEDLINE | ID: mdl-35534864

ABSTRACT

OBJECTIVE: Polycystic ovary syndrome (PCOS) is characterized by follicular dysplasia. An insufficient glycolysis-derived energy supply of granulosa cells (GCs) is an important cause of follicular dysplasia in PCOS. Follicular fluid (FF) exosomal microRNAs (miRNAs) have been proven to regulate the function of GCs. In this study, exosomes extracted from clinical FF samples were used for transcriptome sequencing (RNA-seq) analysis, and a human ovarian granulocyte tumour cell line (KGN cells) was used for in vitro mechanistic studies. METHODS AND RESULTS: In FF exosomal RNA-seq analysis, a decrease in glycolysis-related pathways was identified as an important feature of the PCOS group, and the differentially expressed miR-143-3p and miR-155-5p may be regulatory factors of glycolysis. By determining the effects of miR-143-3p and miR-155-5p on hexokinase (HK) 2, pyruvate kinase muscle isozyme M2 (PKM2), lactate dehydrogenase A (LDHA), pyruvate, lactate and apoptosis in KGN cells, we found that upregulated miR-143-3p expression in exosomes from the PCOS group inhibited glycolysis in KGN cells; knockdown of miR-143-3p significantly alleviated the decrease in glycolysis in KGN cells in PCOS. MiR-155-5p silencing attenuated glycolytic activation in KGN cells; overexpression of miR-155-5p significantly promoted glycolysis in KGN cells in PCOS. In this study, HK2 was found to be the mediator of miR-143-3p and miR-155-5p in FF-derived exosome-mediated regulation of glycolysis in KGN cells. Reduced glycolysis accelerated apoptosis of KGN cells, which mediated follicular dysplasia through ATP, lactate and apoptotic pathways. CONCLUSIONS: In conclusion, these results indicate that miR-143-3p and miR-155-5p in FF-derived exosomes antagonistically regulate glycolytic-mediated follicular dysplasia of GCs in PCOS. Video Abstract.


Subject(s)
MicroRNAs , Polycystic Ovary Syndrome , Cell Proliferation , Female , Follicular Fluid/metabolism , Glycolysis , Granulosa Cells/metabolism , Granulosa Cells/pathology , Humans , Lactates/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Polycystic Ovary Syndrome/genetics , Polycystic Ovary Syndrome/metabolism , Polycystic Ovary Syndrome/pathology
8.
Neuropharmacology ; 176: 108251, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32710979

ABSTRACT

It is a grand challenge to develop a truly effective treatment of substance use disorder (SUD), particularly for cocaine and other drugs without an FDA-approved treatment available, because a truly effective therapy must effectively block the drug's physiological and reinforcing effects during the entire period of treatment in order to achieve the long-time abstinence required by the FDA. Whether a biologic, such as monoclonal antibody, vaccine, or therapeutic enzyme, can be truly effective for SUD treatment or not has been the subject of extensive debate. The main debate question is whether a biologic, particularly an exogenous enzyme, can effectively block the drug's reinforcing effect. In this report, we demonstrate that a modest dose of a recently redesigned long-acting cocaine hydrolase, CocH3-Fc(M6), can be used to effectively block the psychostimulant, discriminative stimulus, and reinforcing effects of cocaine for a sufficiently long period of time. For example, a dose of 3 mg/kg CocH3-Fc(M6) completely blocked the discriminative stimulus and reinforcing effects for 24/25 days and continued to significantly attenuate/decrease the cocaine effects for at least 29 days in rats. All the animal data consistently suggest that the long-acting cocaine hydrolase is a truly promising candidate of enzyme therapy for treatment of cocaine use disorder.


Subject(s)
Chemical Engineering/methods , Cocaine-Related Disorders/drug therapy , Cocaine/administration & dosage , Discrimination Learning/drug effects , Enzyme Therapy/methods , Reinforcement, Psychology , Animals , Central Nervous System Stimulants/administration & dosage , Cocaine-Related Disorders/metabolism , Cocaine-Related Disorders/psychology , Discrimination Learning/physiology , Dopamine Uptake Inhibitors/administration & dosage , Enzymes/administration & dosage , Enzymes/chemical synthesis , Male , Rats , Rats, Sprague-Dawley , Treatment Outcome
9.
Sci Rep ; 10(1): 9254, 2020 06 09.
Article in English | MEDLINE | ID: mdl-32518276

ABSTRACT

Cebranopadol is known as a highly potent analgesic. Recent studies also demonstrated that administration of cebranopadol significantly decreased cocaine self-administration and significantly reduced cue-induced cocaine-seeking behaviors in rats. However, it was unclear whether these interesting behavioral observations are related to any potential effects of cebranopadol on cocaine pharmacokinetics or cocaine-induced hyperactivity. In principle, a promising therapeutic candidate for cocaine dependence treatment may alter the cocaine pharmacokinetics and/or attenuate cocaine-induced reward and hyperactivity and, thus, decrease cocaine self-administration and reduce cue-induced cocaine-seeking behaviors. In this study, we examined possible effects of cebranopadol on cocaine pharmacokinetics and cocaine-induced hyperactivity for the first time. According to our animal data in rats, cebranopadol did not significantly alter the pharmacokinetics of cocaine. According to our more extensive locomotor activity testing data, cebranopadol itself also dose-dependently induced hyperactivity in rats at doses higher than 50 µg/kg. Cebranopadol at a low dose of 25 µg/kg (p.o.) did not induce significant hyperactivity itself, but significantly potentiated cocaine-induced hyperactivity on Days 4 to 7 after the repeated daily dosing of the drug.


Subject(s)
Cocaine/pharmacokinetics , Hyperkinesis/chemically induced , Indoles/adverse effects , Spiro Compounds/adverse effects , Analgesics/adverse effects , Animals , Behavior, Animal/drug effects , Cocaine/toxicity , Dose-Response Relationship, Drug , Indoles/pharmacology , Male , Motor Activity/drug effects , Rats, Sprague-Dawley , Spiro Compounds/pharmacology
10.
Neuropharmacology ; 172: 108128, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32389751

ABSTRACT

As a novel first-in-class potent analgesic acting as an agonist of multiple opioid receptors, cebranopadol showed high efficacy and good tolerability in a broad range of preclinical models and clinical trials related to pain. In the present study, to evaluate the efficacy and safety of cebranopadol as a potential treatment of cocaine dependence, we tested the effects of cebranopadol with single and repeated doses (25, 50, 75, or 100 µg/kg, oral gavage) using rat models of cocaine fixed-ratio (FR) self-administration (SA), cocaine progressive-ratio (PR) SA, and sucrose pellet SA. In single-dosing treatment paradigm, cebranopadol significantly and dose-dependently reduced cocaine SA under FR and PR schedules and suppressed food intake under FR schedule without causing apparent side effects. In repeated-dosing treatment scheme, i.e. daily administration of 25, 50, 75, or 100 µg/kg cebranopadol for a week, the similar reduction in cocaine intake was detected, while non-negligible complications/side effects were observed at repeated high doses (75 and 100 µg/kg). The observed side effects were similar to the common toxic signs elicited by heroin at high doses, although cebranopadol did not fully substitute heroin's discriminative stimulant effects in our drug discriminative tests. These results demonstrated that the most appropriate oral dose of cebranopadol to balance the efficacy and safety is 50 µg/kg. Collectively, although cebranopadol may serve as a new treatment for cocaine dependence, more consideration, cautiousness, and a clear optimal dose window to dissociate its therapeutic effects from opioid side effects/complications in male and female subjects will be necessary to increase its practical clinical utility.


Subject(s)
Analgesics, Opioid/therapeutic use , Cocaine-Related Disorders/drug therapy , Indoles/therapeutic use , Spiro Compounds/therapeutic use , Analgesics, Opioid/adverse effects , Animals , Cocaine-Related Disorders/psychology , Conditioning, Operant , Dose-Response Relationship, Drug , Heroin/pharmacology , Indoles/adverse effects , Male , Rats , Rats, Sprague-Dawley , Reinforcement Schedule , Self Administration , Spiro Compounds/adverse effects
11.
AAPS J ; 22(1): 5, 2019 11 21.
Article in English | MEDLINE | ID: mdl-31754920

ABSTRACT

Therapeutic treatment of cocaine toxicity or addiction is a grand medical challenge. As a promising therapeutic strategy for treatment of cocaine toxicity and addiction to develop a highly efficient cocaine hydrolase (CocH) capable of accelerating cocaine metabolism to produce physiologically/biologically inactive metabolites, our previously designed A199S/S287G/A328W/Y332G mutant of human butyrylcholinesterase (BChE), known as cocaine hydrolase-1 (CocH1), possesses the desirably high catalytic activity against cocaine. The C-terminus of CocH1, truncated after amino acid #529, was fused to human serum albumin (HSA) to extend the biological half-life. The C-terminal HSA-fused CocH1 (CocH1-HSA), known as Albu-CocH1, Albu-CocH, AlbuBChE, Albu-BChE, or TV-1380 in literature, has shown favorable preclinical and clinical profiles. However, the actual therapeutic value of TV-1380 for cocaine addiction treatment is still limited by the short half-life. In this study, we designed and tested a new type of HSA-fused CocH1 proteins, i.e., N-terminal HSA-fused CocH1, with or without a linker between the HSA and CocH1 domains. It has been demonstrated that the catalytic activity of these new fusion proteins against cocaine is similar to that of TV-1380. However, HSA-CocH1 (without a linker) has a significantly longer biological half-life (t1/2 = 14 ± 2 h) compared to the corresponding C-terminal HSA-fused CocH1, i.e., CocH1-HSA (TV-1380 with t1/2 = 5-8 h), in rats. Further, the N-terminal HSA-fused CocH1 proteins with a linker have further prolonged biological half-lives: t1/2 = 17 ± 2 h for both HSA-EAAAK-CocH1 and HSA-PAPAP-CocH1, and t1/2 = 18 ± 3 h for HSA-(PAPAP)2-CocH1. These N-terminal HSA-fused CocH1 proteins may serve as more promising protein drug candidates for cocaine addiction treatment.


Subject(s)
Albumins/pharmacokinetics , Butyrylcholinesterase/pharmacokinetics , Carboxylic Ester Hydrolases/pharmacokinetics , Recombinant Fusion Proteins/pharmacokinetics , Recombinant Proteins/pharmacokinetics , Albumins/chemistry , Animals , Butyrylcholinesterase/chemistry , Carboxylic Ester Hydrolases/chemistry , Half-Life , Mice , Models, Molecular , Rats , Recombinant Fusion Proteins/chemistry , Recombinant Proteins/chemistry
12.
Chem Biol Interact ; 306: 89-95, 2019 Jun 01.
Article in English | MEDLINE | ID: mdl-30986387

ABSTRACT

Human butyrylcholinesterase (BChE) is known as a safe and effective protein for detoxification of organophosphorus (OP) nerve agents. Its rationally designed mutants with considerably improved catalytic activity against cocaine, known as cocaine hydrolases (CocHs), are recognized as the most promising drug candidates for the treatment of cocaine abuse. However, it is a grand challenge to efficiently produce active recombinant BChE and CocHs with a sufficiently long biological half-life. In the present study, starting from a promising CocH, known as CocH3 (i.e. A199S/F227A/S287G/A328W/Y332G mutant of human BChE), which has a ~2000-fold improved catalytic activity against cocaine compared to wild-type BChE, we designed an N-terminal fusion protein, Fc(M3)-(PAPAP)2-CocH3, which was constructed by fusing Fc of human IgG1 to the N-terminal of CocH3 and further optimized by inserting a linker between the two protein domains. Without lowering the enzyme activity, Fc(M3)-(PAPAP)2-CocH3 expressed in Chinese hamster ovary (CHO) cells has not only a long biological half-life of 105 ±â€¯7 h in rats, but also a high yield of protein expression. Particularly, Fc(M3)-(PAPAP)2-CocH3 has a ~21-fold increased protein expression yield in CHO cells compared to CocH3 under the same experimental conditions. Given the observations that Fc(M3)-(PAPAP)2-CocH3 has not only a high catalytic activity against cocaine and a long biological half-life, but also a high yield of protein expression, this new protein entity reported in this study would be a more promising candidate for therapeutic treatment of cocaine overdose and addiction.


Subject(s)
Carboxylic Ester Hydrolases/biosynthesis , Carboxylic Ester Hydrolases/chemistry , Immunoglobulin Fc Fragments/chemistry , Recombinant Fusion Proteins/biosynthesis , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Animals , CHO Cells , Carboxylic Ester Hydrolases/genetics , Cricetulus , Humans , Immunoglobulin Fc Fragments/genetics , Immunoglobulin Fc Fragments/metabolism , Male , Rats , Rats, Sprague-Dawley , Recombinant Proteins/genetics
13.
AAPS J ; 20(3): 53, 2018 03 19.
Article in English | MEDLINE | ID: mdl-29556863

ABSTRACT

Cocaine abuse is a worldwide public health and social problem without a US Food and Drug Administration (FDA)-approved medication. Accelerating cocaine metabolism that produces biologically inactive metabolites by administration of an efficient cocaine hydrolase (CocH) has been recognized as a promising strategy for cocaine abuse treatment. However, the therapeutic effects of CocH are limited by its short biological half-life (e.g., 8 h or shorter in rats). In this study, we designed and prepared a set of Fc-fusion proteins constructed by fusing Fc(M3) with CocH3 at the N-terminus of CocH3. A linker between the two protein domains was optimized to improve both the biological half-life and catalytic activity against cocaine. It has been concluded that Fc(M3)-G6S-CocH3 not only has fully retained the catalytic efficiency of CocH3 against cocaine but also has the longest biological half-life (e.g., ∼ 136 h in rats) among all of the long-acting CocHs identified so far. A single dose (0.2 mg/kg, IV) of Fc(M3)-G6S-CocH3 was able to significantly attenuate 15 mg/kg cocaine-induced hyperactivity for at least 11 days (268 h) after the Fc(M3)-G6S-CocH3 administration.


Subject(s)
Carboxylic Ester Hydrolases/chemistry , Cocaine-Related Disorders/drug therapy , Immunoglobulin Fc Fragments/chemistry , Recombinant Fusion Proteins/therapeutic use , Recombinant Proteins/chemistry , Animals , CHO Cells , Catalysis , Cricetulus , Half-Life , Male , Protein Engineering , Rats, Sprague-Dawley , Recombinant Fusion Proteins/pharmacokinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...