Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Behav Immun ; 119: 171-187, 2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38565398

ABSTRACT

Gut microbial homeostasis is crucial for the health of cognition in elderly. Previous study revealed that polysorbate 80 (P80) as a widely used emulsifier in food industries and pharmaceutical formulations could directly alter the human gut microbiota compositions. However, whether long-term exposure to P80 could accelerate age-related cognitive decline via gut-brain axis is still unknown. Accordingly, in this study, we used the senescence accelerated mouse prone 8 (SAMP8) mouse model to investigate the effects of the emulsifier P80 intake (1 % P80 in drinking water for 12 weeks) on gut microbiota and cognitive function. Our results indicated that P80 intake significantly exacerbated cognitive decline in SAMP8 mice, along with increased brain pathological proteins deposition, disruption of the blood-brain barrier and activation of microglia and neurotoxic astrocytes. Besides, P80 intake could also induce gut microbiota dysbiosis, especially the increased abundance of secondary bile acids producing bacteria, such as Ruminococcaceae, Lachnospiraceae, and Clostridium scindens. Moreover, fecal microbiota transplantation from P80 mice into 16-week-old SAMP8 mice could also exacerbated cognitive decline, microglia activation and intestinal barrier impairment. Intriguingly, the alterations of gut microbial composition significantly affected bile acid metabolism profiles after P80 exposure, with markedly elevated levels of deoxycholic acid (DCA) in serum and brain tissue. Mechanically, DCA could activate microglial and promote senescence-associated secretory phenotype production through adenosine triphosphate-binding cassette transporter A1 (ABCA1) importing lysosomal cholesterol. Altogether, the emulsifier P80 accelerated cognitive decline of aging mice by inducing gut dysbiosis, bile acid metabolism alteration, intestinal barrier and blood brain barrier disruption as well as neuroinflammation. This study provides strong evidence that dietary-induced gut microbiota dysbiosis may be a risk factor for age-related cognitive decline.

2.
EBioMedicine ; 100: 104967, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38241975

ABSTRACT

The incidence of cancer has shown a great increase during the past decades and poses tough challenges to cancer treatment. Anti-tumour immunotherapy, represented by immune checkpoint inhibitors (ICIs), possesses favorable remission in unrestricted spectrum of cancer types. However, its efficacy seems to be heterogeneous among accumulating studies. Emerging evidences suggest that gut microbiota can modulate anti-tumour immuno-response and predict clinical prognosis. Therefore, remodeling microbiota characteristics with fecal microbiota transplantation (FMT) may be capable of reinforcing host ICIs performance by regulating immune-tumour cell interactions and altering microbial metabolites, thereby imperceptibly shifting the tumour microenvironment. However, the long-term safety of FMT is under concern, which calls for more rigorous screening. In this review, we examine current experimental and clinical evidences supporting the FMT efficacy in boosting anti-tumour immuno-response and lessening tumour-related complications. Moreover, we discuss the challenges in FMT and propose feasible resolutions, which may offer crucial guidance for future clinical operations.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Neoplasms , Humans , Fecal Microbiota Transplantation , Neoplasms/therapy , Immunotherapy , Tumor Microenvironment
3.
Front Immunol ; 14: 1158200, 2023.
Article in English | MEDLINE | ID: mdl-37122756

ABSTRACT

Tumor immune microenvironment (TIME), a tumor-derived immune component, is proven to be closely related to the development, metastasis, and recurrence of tumors. Gut microbiota and its fermented-metabolites short-chain fatty acids (SCFAs) play a critical role in maintaining the immune homeostasis of gastrointestinal tumors. Consisting mainly of acetate, propionate, and butyrate, SCFAs can interact with G protein-coupled receptors 43 of T helper 1 cell or restrain histone deacetylases (HDACs) of cytotoxic T lymphocytes to exert immunotherapy effects. Studies have shed light on SCFAs can mediate the differentiation and function of regulatory T cells, as well as cytokine production in TIME. Additionally, SCFAs can alter epigenetic modification of CD8+ T cells by inhibiting HDACs to participate in the immune response process. In gastrointestinal tumors, the abundance of SCFAs and their producing bacteria is significantly reduced. Direct supplementation of dietary fiber and probiotics, or fecal microbiota transplantation to change the structure of gut microbiota can both increase the level of SCFAs and inhibit tumor development. The mechanism by which SCFAs modulate the progression of gastrointestinal tumors has been elucidated in this review, aiming to provide prospects for the development of novel immunotherapeutic strategies.


Subject(s)
Gastrointestinal Microbiome , Gastrointestinal Neoplasms , Humans , Gastrointestinal Microbiome/physiology , CD8-Positive T-Lymphocytes , Fatty Acids, Volatile , Butyrates/therapeutic use , Gastrointestinal Neoplasms/therapy , Tumor Microenvironment
4.
Cell Death Discov ; 8(1): 158, 2022 Apr 04.
Article in English | MEDLINE | ID: mdl-35379788

ABSTRACT

Gastric intestinal metaplasia (IM) is a precancerous lesion that increases the risk of subsequent gastric cancer (GC) development. Therefore, the mechanism of IM has been the focus of basic and clinical research. Helicobacter pylori (H. pylori) infection has been recognized as the main pathogenesis of gastric IM. However, more and more studies have shown that chronic inflammation of gastric mucosa caused by bile reflux is the key pathogenic factor of gastric IM. Bile reflux activates the expression of IM biomarkers via the bile acid receptor. In addition, microRNAs, exosomes, and epigenetics are also involved in the occurrence and development of bile acid-induced gastric IM. Currently, the relevant research is still very few. The molecular mechanism of the phenotypic transformation of gastrointestinal epithelial cells induced by bile acids has not been fully understood. This article mainly reviews the physiology and pathology of bile acid, mechanism of gastric IM induced by bile acid, bile acid receptors, and so on, in order to provide reference for further research.

SELECTION OF CITATIONS
SEARCH DETAIL
...