Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-36652042

ABSTRACT

PURPOSE: Activation of mitogen-activated protein kinases (MAPKs) by pathological stimuli participates in cardiovascular diseases. Dysfunction of adventitial fibroblast has emerged as a critical regulator in vascular remodeling, while the potential mechanism remains unclear. In this study, we sought to determine the effect of different activation of MAPKs in adventitial fibroblast contributing to neointima formation. METHODS: Balloon injury procedure was performed in male 12-week-old Sprague-Dawley rats. After injury, MAPK inhibitors were applied to the adventitia of injured arteries to suppress MAPK activation. Adventitial fibroblasts were stimulated by platelet-derived growth factor-BB (PDGF-BB) with or without MAPK inhibitors. RNA sequencing was performed to investigate the change of pathway and cell function. Wound healing, transwell assay, and flow cytometry were used to analyze adventitial fibroblast function. RESULTS: Phosphorylation of p38, c-Jun N-terminal kinase (JNK), and extracellular regulated kinases 1/2 (ERK1/2) was increased in injured arteries after balloon injury. In primary culture of adventitial fibroblasts, PDGF-BB increased phosphorylation of p38, JNK, ERK1/2, and extracellular regulated kinase 5 (ERK5) in a short time, which was normalized by their inhibitors respectively. Compared with the injury group, perivascular administration of four MAPK inhibitors significantly attenuated neointima formation by quantitative analysis of neointimal area, intima to media (I/M) ratio, and lumen area. RNA sequencing of adventitial fibroblasts treated with PDGF-BB with or without four inhibitors demonstrated differentially expressed genes involved in multiple biological processes, including cell adhesion, proliferation, migration, and inflammatory response. Wound healing and transwell assays showed that four inhibitors suppressed PDGF-BB-induced adventitial fibroblast migration. Cell cycle analysis by flow cytometry demonstrated that JNK, ERK1/2, and ERK5 but not p38 inhibitor blocked PDGF-BB-induced G1 phase release associated with decrease expression of cell cycle protein Cyclin D1 and transcription factor GATA4. Moreover, four inhibitors decreased macrophage infiltration into adventitia and monocyte chemoattractant protein-1 (MCP-1) expression. CONCLUSION: These results suggest that MAPKs differentially regulate activation of adventitial fibroblast through GATA4/Cyclin D1 axis that participates in neointima formation.

2.
Pharmacol Res ; 183: 106389, 2022 09.
Article in English | MEDLINE | ID: mdl-35934193

ABSTRACT

Lung adenocarcinoma (LUAD) is associated with poor prognosis. Identifying novel cancer targets and helpful therapeutic strategies remains a serious clinical challenge. This study detected differentially expressed genes in The Cancer Genome Atlas (TCGA) LUAD data collection. We also identified a predictive DNA biomarker, G protein-coupled receptor 37 (GPR37), which was verified as a prognostic biomarker with a critical role in tumor progression. In human LUAD specimens and microarray analyses, we determined that GPR37 was significantly upregulated and associated with a poor prognosis. GPR37 downregulation markedly inhibited the proliferation and migration of LUAD both in vitro and in vivo. Mechanistically, GPR37 could bind to CDK6, thereby facilitating tumor progression in LUAD by inducing cell cycle arrest at the G1 phase. GPR37 also facilitates tumorigenesis in xenograft tumors in vivo. High-throughput screening for GPR37-targeted drugs was performed using the Natural Products Library, which revealed the potential of Hypocrellin B to inhibit GPR37 and cell growth in LUAD. We demonstrated that Hypocrellin B suppressed LUAD cell proliferation and migration both in vitro and in vivo via GPR37 inhibition. Collectively, our findings reveal the role of GPR37 in LUAD progression and migration and the potential of GPR37 as a target for the treatment of LUAD. Thus, the specific inhibition of GPR37 by the natural product Hypocrellin B may possess the potential for the treatment of LUAD.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/metabolism , Animals , Biomarkers , Cell Proliferation/physiology , Cyclin-Dependent Kinase 6/genetics , Cyclin-Dependent Kinase 6/metabolism , Gene Expression Regulation, Neoplastic , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Precision Medicine , Prognosis , Receptors, G-Protein-Coupled
3.
DNA Cell Biol ; 41(8): 750-767, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35862468

ABSTRACT

Dihydroartemisinin (DHA) is a traditional antimalarial drug. DHA plays a crucial role in preventing pulmonary hypertension (PH); however, its regulatory function on microRNAs (miRNAs) in PH remains unclear. This study aimed to investigate whether DHA exerts its protective functions by regulating miR-335 in PH. Hypoxia-induced PH models were induced both in vitro and in vivo. Mice were treated with various concentrations of DHA, and pulmonary arterial smooth muscle cells (PASMCs) were treated with DHA, miR-335 inhibitor, miR-335 mimic, or Van Gogh-like 2 (Vangl2) plasmid. The expression of miR-335 and Vangl2, pulmonary arterial remodeling index; right ventricular hypertrophy index; and proliferation and migration indexes were measured. DHA improved pulmonary vascular remodeling and alleviated PH in vivo. miRNA sequencing and real-time PCR results further show that the increase in hypoxia-induced miR-335 was avoided by DHA administration, and miR-335 increased the hypoxia-induced PASMC proliferation and migration. MiRNA databases and dual-luciferase reporter assay show that miR-335 directly targets Vangl2, and Vangl2 decreased the hypoxia-induced PASMC proliferation and migration. The miR-335 inhibitor failed to inhibit hypoxia-induced proliferation and migration upregulation in Vangl2 knockdown PASMCs, and the effect of DHA can be blocked by miR-335 upregulation. In hypoxic PH, MiR-335 is increased, whereas Vangl2 is decreased. MiR-335 can significantly promote the hypoxia-induced proliferation and migration of PASMCs by targeting the Vangl2 gene. DHA effectively reverses the hypoxia-induced upregulation of miR-335 expression, avoiding the miR-335-mediated downregulation of Vangl2 and thereby promoting the expression of Vangl2 to prevent PH.


Subject(s)
Artemisinins , Hypertension, Pulmonary , MicroRNAs , Animals , Artemisinins/pharmacology , Artemisinins/therapeutic use , Cells, Cultured , Down-Regulation , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/prevention & control , Hypoxia/complications , Mice , MicroRNAs/metabolism , Nerve Tissue Proteins , Pulmonary Artery/metabolism
4.
Int J Mol Med ; 47(6)2021 06.
Article in English | MEDLINE | ID: mdl-33907846

ABSTRACT

Pulmonary arterial hypertension (PAH), is a chronic and progressive disorder characterized by pulmonary vascular remodeling, including endothelial cell dysfunction and inflammation. MicroRNAs (miRNAs or miRs) play an important role in the development of PAH. In addition, fibroblast growth factor 21 (FGF21) has been found to have marked anti-dysfunction and anti­inflammatory properties. Therefore, the present study aimed to investigate the latent effects of FGF21 against PAH through the miR­27b/peroxisome proliferator­activated receptor γ (PPARγ) axis. Human pulmonary arterial endothelial cells (HPAECs) subjected to hypoxia were used as PAH models. The results revealed that PPARγ expression was downregulated and miR­27b expression was upregulated in the HPAECs exposed to hypoxia. Luciferase assay suggested that PPARγ was a target gene of miR­27b. Furthermore, miR­27b inhibited the expression of the PPARγ gene, thereby aggravating hypoxia­induced HPAEC dysfunction. Moreover, miR­27b activated the nuclear factor­κB signaling pathway and the expression of inflammatory factors [interleukin (IL)­1ß, IL­6 and tumor necrosis factor­α] by targeting PPARγ. In addition, the expression of miR­27b decreased following treatment of the hypoxia­exposed HPAECs with FGF21. Furthermore, FGF21 alleviated hypoxia­induced HPAEC dysfunction and inflammation by inhibiting miR­27b expression and thereby promoting PPARγ expression. On the whole, the findings of the present study suggest that FGF21 may serve as a therapeutic target for managing PAH through the miR­27b­mediated PPARγ pathway.


Subject(s)
Endothelial Cells/metabolism , Endothelial Cells/pathology , Fibroblast Growth Factors/pharmacology , Inflammation/pathology , MicroRNAs/metabolism , PPAR gamma/metabolism , Pulmonary Artery/pathology , Signal Transduction , Cell Hypoxia/drug effects , Cell Hypoxia/genetics , Down-Regulation/drug effects , Down-Regulation/genetics , Endothelial Cells/drug effects , Gene Expression Regulation/drug effects , Humans , Inflammation/genetics , MicroRNAs/genetics , PPAR gamma/genetics , Up-Regulation/drug effects , Up-Regulation/genetics
5.
Comb Chem High Throughput Screen ; 24(5): 701-715, 2021.
Article in English | MEDLINE | ID: mdl-33076804

ABSTRACT

BACKGROUND AND OBJECTIVE: Qishen Yiqi formula (QSYQ) is used to treat cardiovascular disease in the clinical practice of traditional Chinese medicine. However, few studies have explored whether QSYQ affects pulmonary arterial hypertension (PAH), and the mechanisms of action and molecular targets of QSYQ for the treatment of PAH are unclear. A bioinformatics/network topology-based strategy was used to identify the bioactive ingredients, putative targets, and molecular mechanisms of QSYQ in PAH. METHODS: A network pharmacology-based strategy was employed by integrating active component gathering, target prediction, PAH gene collection, network topology, and gene enrichment analysis to systematically explore the multicomponent synergistic mechanisms. RESULTS: In total, 107 bioactive ingredients of QSYQ and 228 ingredient targets were identified. Moreover, 234 PAH-related differentially expressed genes with a |fold change| >2 and an adjusted P value < 0.005 were identified between the PAH patient and control groups, and 266 therapeutic targets were identified. The pathway enrichment analysis indicated that 85 pathways, including the PI3K-Akt, MAPK, and HIF-1 signaling pathways, were significantly enriched. TP53 was the core target gene, and 7 other top genes (MAPK1, RELA, NFKB1, CDKN1A, AKT1, MYC, and MDM2) were the key genes in the gene-pathway network based on the effects of QSYQ on PAH. CONCLUSION: An integrative investigation based on network pharmacology may elucidate the multicomponent synergistic mechanisms of QSYQ in PAH and lay a foundation for further animal experiments, human clinical trials and rational clinical applications of QSYQ.


Subject(s)
Computational Biology , Drugs, Chinese Herbal/pharmacology , Gene Regulatory Networks/drug effects , Pulmonary Arterial Hypertension/drug therapy , Drugs, Chinese Herbal/chemistry , Humans , Medicine, Chinese Traditional , Pulmonary Arterial Hypertension/genetics
6.
J Cell Mol Med ; 24(21): 12777-12788, 2020 11.
Article in English | MEDLINE | ID: mdl-32954646

ABSTRACT

Long noncoding RNAs (lncRNAs) have been suggested to play indispensable roles in multiple heart diseases. However, the correlations between lncRNAs and atrial fibrillation (AF) are unclear. In this study, we performed comprehensive lncRNA profiling via high-throughput RNA sequencing analysis using non-AF and AF rabbit models. Based on a series of filtering pipelines and bioinformatics analyses, TCONS-00106987 was selected for further research. TCONS-00106987 levels were increased in the atria during AF. Moreover, the atrial effective refractory period was shortened and the AF inducibility was increased in vivo in response to lentiviral-mediated up-regulation of TCONS-00106987. TCONS-00106987 repression resulted in the opposite effects. Further studies indicated that TCONS-00106987 expression was positively correlated with the expression of the protein-coding gene KCNJ2. Luciferase reporter assays and whole-cell patch-clamp recording confirmed that TCONS-00106987 promoted electrical remodelling via endogenous competition with microRNA-26 (miR-26) to induce transcription of its target gene KCNJ2, thereby increasing inward-rectifier K+ current (IK1 ). In conclusion, our study reveals a pathogenic lncRNA-miRNA regulatory network specific to atrial electrical remodelling that offers potential therapeutic targets for AF.


Subject(s)
Atrial Fibrillation/genetics , Atrial Fibrillation/physiopathology , Atrial Remodeling/genetics , Gene Expression Regulation , MicroRNAs/metabolism , Potassium Channels, Inwardly Rectifying/genetics , RNA, Long Noncoding/metabolism , Animals , Base Sequence , Binding, Competitive , Female , Gene Expression Profiling , Male , MicroRNAs/genetics , Potassium Channels, Inwardly Rectifying/metabolism , RNA, Long Noncoding/genetics , Rabbits , Up-Regulation/genetics
7.
Biochem Biophys Res Commun ; 527(3): 662-667, 2020 06 30.
Article in English | MEDLINE | ID: mdl-32423816

ABSTRACT

Idiopathic Pulmonary fibrosis(PF)is a chronic progressive disease, which is a lack of effective treatment,and the pathogenesis of IPF is not fully elucidated. Asiaticoside(AS) is isolated from Centella asiatica and has the effect of promoting scar healing and reducing scar formation. However,its possible role in idiopathic pulmonary fibrosis remains unclear. Adenosine A2A receptor (A2AR) is reported a protective factor in pulmonary fibrosis, and the bone morphogenetic protein 7 (BMP7) signaling pathway plays a crucial role in fibrosis in multiple organs. But the impact of A2AR on the BMP7 pathway has not yet been reported. Therefore, we hypothesized AS may promote the expression of A2AR, and then influence the BMP7/Smad1/5 pathway to alleviate pulmonary fibrosis. A2AR-/- mice and wild-type (WT) mice were administered bleomycin (BLM) by intratracheal injection. AS (50 mg/kg/d) was given daily for 28 days. AS reduced collagen deposition in lung tissue, interstitial lung inflammation. Furthermore, AS promoted A2AR expression and BMP7 pathway. Collectively, AS may attenuate BLM-induced pulmonary fibrosis by upregulating the BMP7 signaling pathway through A2AR.


Subject(s)
Bone Morphogenetic Protein 7/metabolism , Pulmonary Fibrosis/drug therapy , Receptor, Adenosine A2A/genetics , Signal Transduction/drug effects , Smad Proteins/metabolism , Triterpenes/therapeutic use , Animals , Bleomycin , Centella/chemistry , Gene Deletion , Male , Mice , Mice, Inbred BALB C , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/genetics , Pulmonary Fibrosis/metabolism , Triterpenes/chemistry
8.
Pacing Clin Electrophysiol ; 41(5): 459-471, 2018 05.
Article in English | MEDLINE | ID: mdl-29436714

ABSTRACT

BACKGROUND/AIMS: Cardiac autonomic nerve remodeling (ANR) is an important mechanism of atrial fibrillation (AF). GTP cyclohydrolase I, encoded by GCH1, is the rate-limiting enzyme in de novo synthesis of tetrahydrobiopterin (BH4), an essential cofactor for nitric oxide (NO) synthesis. Previous studies reported that increased BH4 and NO content negatively regulated nerve regeneration. This study investigated the effects of GCH1 on ANR via BH4 pathway, regulated by microRNA-206 (miR-206). METHODS AND RESULTS: In canines, atrial tachypacing (A-TP), together with miR-206 overexpression, increased PGP9.5 level and inhibited GCH1 expression by quantitative real-time polymerase chain reaction and western blot analysis. GCH1 was validated to be a direct target of miR-206 by luciferase assays. Meanwhile, miR-206 overexpression by lentiviruses infection into right superior pulmonary vein fat pad decreased GCH1 expression to ∼40% and further reduced BH4 and NO content compared with the control canines. After infection of GCH1 overexpression lentiviruses for two weeks, atrial effective refractory period was increased compared with the control group (105.8 ± 1.537 ms vs 99.17 ± 2.007 ms, P < 0.05). Moreover, GCH1 overexpression attenuated canines' atrial PGP9.5 level to ∼56% of the controls. In myocardial cells, transfection of GCH1 overexpression lentiviruses also decreased PGP9.5 expression to 26% of the control group. In patients, plasma was collected and miR-206 expression was upregulated in AF patients (n = 18) than the controls (n = 12). CONCLUSIONS: Our findings suggested that GCH1 downregulation exacerbated ANR by decreasing atrial BH4 and NO content modulated by miR-206 in A-TP canines. This indicates that GCH1 may prevent the initiation of AF through inhibiting ANR.


Subject(s)
Atrial Fibrillation/physiopathology , Atrial Fibrillation/veterinary , Autonomic Pathways/enzymology , Autonomic Pathways/physiopathology , Biopterins/analogs & derivatives , GTP Cyclohydrolase/metabolism , Heart Conduction System/enzymology , Heart Conduction System/physiopathology , MicroRNAs/metabolism , Animals , Biopterins/metabolism , Blotting, Western , Cardiac Pacing, Artificial , Dogs , Nitric Oxide/metabolism , Real-Time Polymerase Chain Reaction
9.
J Mol Cell Cardiol ; 108: 73-85, 2017 07.
Article in English | MEDLINE | ID: mdl-28546098

ABSTRACT

Electrical remodeling has been reported to play a major role in the initiation and maintenance of atrial fibrillation (AF). Long non-coding RNAs (lncRNAs) have been increasingly recognized as contributors to the pathology of heart diseases. However, the roles and mechanisms of lncRNAs in electrical remodeling during AF remain unknown. In this study, the lncRNA expression profiles of right atria were investigated in AF and non-AF rabbit models by using RNA sequencing technique and validated using quantitative real-time polymerase chain reaction (qRT-PCR). A total of 99,843 putative new lncRNAs were identified, in which 1220 differentially expressed transcripts exhibited >2-fold change. Bioinformatics analysis was conducted to predict the functions and interactions of the aberrantly expressed genes. On the basis of a series of filtering pipelines, one lncRNA, TCONS_00075467, was selected to explore its effects and mechanisms on electrical remodeling. The atrial effective refractory period was shortened in vivo and the L-type calcium current and action potential duration were decreased in vitro by silencing of TCONS_00075467 with lentiviruses. Besides, the expression of miRNA-328 was negatively correlated with TCONS_00075467. We further demonstrated that TCONS_00075467 could sponge miRNA-328 in vitro and in vivo to regulate the downstream protein coding gene CACNA1C. In addition, miRNA-328 could partly reverse the effects of TCONS_00075467 on electrical remodeling. In summary, dysregulated lncRNAs may play important roles in modulating electrical remodeling during AF. Our study may facilitate the mechanism studies of lncRNAs in AF pathogenesis and provide potential therapeutic targets for AF.


Subject(s)
Atrial Fibrillation/genetics , Heart Atria/metabolism , RNA, Long Noncoding/genetics , Transcriptome , Animals , Atrial Fibrillation/diagnosis , Atrial Fibrillation/physiopathology , Atrial Remodeling/genetics , Calcium Channels, L-Type/genetics , Computational Biology/methods , Electrocardiography , Female , Gene Expression Profiling , Gene Expression Regulation , Gene Ontology , Heart Atria/pathology , Male , MicroRNAs/genetics , RNA Interference , Rabbits
10.
Neurosci Lett ; 488(2): 188-92, 2011 Jan 20.
Article in English | MEDLINE | ID: mdl-21093542

ABSTRACT

The cerebrospinal fluid-contacting nucleus (CSF-CN), distributes and localizes in the ventral periaqueductal central gray (PAG) of the brainstem, which may influence actual composition of the cerebrospinal fluid (CSF) for non-synaptic signal transmission via releasing or absorbing bioactive substances. Many experiments have demonstrated that substance P (SP), a substance that is shown to be up-regulated in CSF-CN, plays an important role in the development of inflammatory pain and neuropathic pain. Thus in the present study, we hypothesize that SP in CSF-CN might contribute to morphine dependence in rats, inhibiting SP with (D-Pro2, D-Phe7, D-Trp9)-SP intracerebroventricular (i.c.v.) injection reduce chronic morphine dependence and withdrawal. Rats were repeatedly injected with morphine in five escalating doses for morphine physical dependence. Morphine withdrawal-like behavioral signs and morphine analgesia behaviors were monitored after naloxone administration following i.c.v. injection of (D-Pro2, D-Phe7, D-Trp9)-SP. And SP-expression of CSF-CN was evaluated with dual-label immunofluorescent technique on morphine withdrawal in rats. After i.c.v. treatment with (D-Pro2, D-Phe7, D-Trp9)-SP, the naloxone-precipitated withdrawal symptoms were significantly attenuated, paw withdrawal threshold/thermal withdrawal latency (PWT/TWL) were increased, and SP-expression in CSF-CN was significantly reduced than control group. SP, known a neurotransmitter/neuromodulator of nociception, has also been implicated in the signs of opioid withdrawal. This study provides the first evidence that SP in CSF-CN contributes to morphine physical dependence and withdrawal, which may provide an important and specific role in mediating the motivational aspects of opiates withdrawal via CSF - the parenchyma of the brain, and may represent a novel pharmacological route such as SP inhibitor i.c.v. injection for the control of drug abuse.


Subject(s)
Morphine Dependence/metabolism , Periaqueductal Gray/metabolism , Substance P/metabolism , Animals , Fluorescent Antibody Technique , Male , Morphine Dependence/physiopathology , Periaqueductal Gray/chemistry , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...