Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 10749, 2021 05 24.
Article in English | MEDLINE | ID: mdl-34031437

ABSTRACT

Ethoxyquin (EQ), a quinolone-based antioxidant, has demonstrated neuroprotective properties against several neurotoxic drugs in a phenotypic screening and is shown to protect axons in animal models of chemotherapy-induced peripheral neuropathy. We assessed the effects of EQ on peripheral nerve function in the db/db mouse model of type II diabetes. After a 7 week treatment period, 12-week-old db/db-vehicle, db/+ -vehicle and db/db-EQ treated animals were evaluated by nerve conduction, paw withdrawal against a hotplate, and fiber density in hindlimb footpads. We found that the EQ group had shorter paw withdrawal latency compared to vehicle db/db group. The EQ group scored higher in nerve conduction studies, compared to vehicle-treated db/db group. Morphology studies yielded similar results. To investigate the potential role of mitochondrial DNA (mtDNA) deletions in the observed effects of EQ, we measured total mtDNA deletion burden in the distal sciatic nerve. We observed an increase in total mtDNA deletion burden in vehicle-treated db/db mice compared to db/+ mice that was partially prevented in db/db-EQ treated animals. These results suggest that EQ treatment may exert a neuroprotective effect in diabetic neuropathy. The prevention of diabetes-induced mtDNA deletions may be a potential mechanism of the neuroprotective effects of EQ in diabetic neuropathy.


Subject(s)
Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Type 2/complications , Diabetic Neuropathies/prevention & control , Ethoxyquin/administration & dosage , Neuroprotective Agents/administration & dosage , Animals , DNA, Mitochondrial/drug effects , DNA, Mitochondrial/genetics , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Type 2/genetics , Diabetic Neuropathies/etiology , Diabetic Neuropathies/genetics , Disease Models, Animal , Ethoxyquin/pharmacology , Mice , Mutation , Neural Conduction/drug effects , Neuroprotective Agents/pharmacology , Sciatic Nerve/chemistry , Sciatic Nerve/drug effects
2.
Biomaterials ; 204: 59-69, 2019 06.
Article in English | MEDLINE | ID: mdl-30884320

ABSTRACT

The use of biochemical signaling to derive smooth muscle cells (SMCs) from mesenchymal stem cells (MSCs) has been explored, but the induction of a fully functional SMC phenotype remains to be a major challenge. Cell morphology has been shown to regulate MSC differentiation into various lineages, including SMCs. We engineered substrates with microgrooves to induce cell elongation to study the mechanism underlying the MSC shape modulation in SMC differentiation. In comparison to those on flat substrates, MSCs cultured on engineered substrates were elongated with increased aspect ratios for both cell body and nucleus, as well as augmented cytoskeletal tensions. Biochemical studies indicated that the microgroove-elongated cells expressed significantly higher levels of SMC markers. MicroRNA analyses showed that up-regulation of miR-145 and the consequent repression of KLF4 in these elongated cells promoted MSC-to-SMC differentiation. Rho/ROCK inhibitions, which impair cytoskeletal tension, attenuated cell and nuclear elongations and disrupted the miR-145/KLF4 regulation for SMC differentiation. Furthermore, cell traction force measurements showed that miR-145 is essential for the functional contractility in the microgroove-induced SMC differentiation. Collectively, our findings demonstrate that, through a Rho-ROCK/miR-145/KLF4 pathway, the elongated cell shape serves as a decisive geometric cue to direct MSC differentiation into functional SMCs.


Subject(s)
Cell Differentiation , Cell Shape , Mesenchymal Stem Cells/cytology , MicroRNAs/metabolism , Myocytes, Smooth Muscle/cytology , Biomarkers/metabolism , Cell Differentiation/drug effects , Cell Differentiation/genetics , Cell Shape/drug effects , Cell Shape/genetics , Dimethylpolysiloxanes/pharmacology , Humans , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors/metabolism , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , MicroRNAs/genetics , Models, Biological , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Signal Transduction/drug effects , Transforming Growth Factor beta1/pharmacology , Up-Regulation/drug effects , Up-Regulation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...