Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Reprod Biomed Online ; 45(6): 1065-1083, 2022 12.
Article in English | MEDLINE | ID: mdl-36280424

ABSTRACT

RESEARCH QUESTION: Does kaempferol alleviate postovulatory oocyte ageing, thereby maintaining their early embryonic development capacity? DESIGN: The effects of kaempferol on postovulatory ageing were investigated in vitro and in vivo by short-term kaempferol administration (mature oocytes were cultured in a kaempferol-containing medium for 12 h; mice were intragastrically administered with the appropriate amount of kaempferol for 21 days). Spindle morphology and chromosome alignment, levels of oxidative stress and the gap junction were assessed by immunofluorescence. Fertilization ability and early embryonic development ability of each oocyte group was detected by IVF. Fertilization of the ageing oocyte model was used to explore whether kaempferol could improve adverse pregnancy outcome. RNA-sequencing and quantitative polymerase chain reaction were used to identify the cellular pathways through which kaempferol relieves postovulatory oocyte ageing in vivo. RESULTS: Kaempferol administration altered various processes in the ageing oocytes, including oxidative stress, the peroxisome, TNF signalling, cAMP signalling and the gap junction pathway. Expression of several important genes, such as Sirt1, Mapk1, Ampk and Foxo3, was regulated. Moreover, kaempferol ameliorated adverse pregnancy outcomes of fertilized ageing oocytes. IVF results indicate that kaempferol could partially counteract the effects of oocyte ageing on fertilization capacity (pronucleus: kaempferol, 69.08 ± 2.37% versus aged, 38.95 ± 3.58%) and early embryonic development (blastocyst: kaempferol, 50.02 ± 3.34% versus aged, 30.83 ± 5.46%). CONCLUSIONS: Our results indicate that kaempferol may be a potent natural antioxidant, have implications for animal husbandry and may help improve the success rate of IVF and ICSI. Further clinical trials are needed.


Subject(s)
Cellular Senescence , Kaempferols , Female , Mice , Pregnancy , Animals , Kaempferols/pharmacology , Kaempferols/metabolism , Oocytes , Blastocyst/metabolism , Embryonic Development , Fertilization in Vitro
2.
Ecotoxicol Environ Saf ; 225: 112807, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34562787

ABSTRACT

Perfluorooctane sulphonate (PFOS), as a surfactant, is widely applied in the agricultural production activities and has become a potential menace to human health. The mechanism of its effect on the maturation of mammalian oocytes is unclear. This study explored the toxic effect of PFOS on mouse oocyte maturation in vitro. The results revealed that PFOS under a concentration of 600 µM could significantly reduce the polar body extrusion rate (PBE) of mouse oocytes and cause symmetrical cell division. Further experiments showed that PFOS resulted in the abnormal cytoskeleton of the oocytes, causing the abnormal spindles and misplaced chromosomes, as well as the impaired dynamics of actin. Moreover, PFOS exposure inhibited the process of oocyte meiosis, which reflected in the slower spindle migration and continuous activation of spindle assembly checkpoint (SAC), then ultimately increased the probability of aneuploidy. Most importantly, PFOS exposure reduced the quality of oocytes, specifically by disrupting the function of mitochondria, inducing cell oxidative stress, and triggering early apoptosis. Furthermore, the level of methylation of histones is additionally influenced. In summary, our findings showed that PFOS exposure interfered with the maturation of mouse oocytes through affecting cytoskeletal dynamics, meiotic progression, oocyte quality, and histone modifications.


Subject(s)
Alkanesulfonic Acids , Alkanesulfonic Acids/metabolism , Alkanesulfonic Acids/toxicity , Animals , Apoptosis , Fluorocarbons , Mice , Oocytes/metabolism , Oxidative Stress
3.
Toxicology ; 460: 152884, 2021 08.
Article in English | MEDLINE | ID: mdl-34358620

ABSTRACT

Perfluorodecanoic acid (PFDA) is a member of the perfluoroalkyl substances, which are toxic to organic functions. Recently, it has been found in follicular fluid, seriously interfering with reproduction. Follicular fluid provides the oocyte with necessary resources during the process of oocytes maturation. However, the effects of PFDA on the oocyte need investigation. Our study evaluated the impacts of PFDA on the meiosis and development potential of mouse oocytes by exposing oocytes to PFDA in vitro at 350, 400, and 450 µM concentrations. The results showed that exposure to PFDA resulted in the first meiotic prophase arrest by obstructing the function of the maturation-promoting factor. It also induced the dysfunction of the spindle assembly checkpoint, expedited the progression of the first meiotic process, and increased the risk of aneuploidy. The oocytes treated with PFDA had a broken cytoskeleton which also contributed to meiotic maturation failure. Besides, PFDA exposure caused mitochondria defections, increased the reactive oxygen species level in oocytes, and consequently induced oocyte apoptosis. Moreover, PFDA produced epigenetic modifications in oocytes and increased the frequency of mature oocytes with declined development potential. In summary, our data indicated that PFDA disturbs the meiotic process and induces oocyte quality deterioration.


Subject(s)
Decanoic Acids/toxicity , Fluorocarbons/toxicity , Meiosis/drug effects , Oocytes/drug effects , Oocytes/metabolism , Reactive Oxygen Species/metabolism , Animals , Dose-Response Relationship, Drug , Female , Humans , Maturation-Promoting Factor/metabolism , Meiosis/physiology , Mice , Mice, Inbred ICR
4.
Theriogenology ; 164: 74-83, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33561696

ABSTRACT

Fas binding factor 1 (Fbf1) is one of the distal appendage proteins in the centriole, located at its distal and proximal ends. It influences the duplication and separation of centrosomes, thereby affecting the progression of the cell cycle during mitosis. However, the function of Fbf1 in meiosis has remained unclear. To explore the role of Fbf1 in the in vitro maturation of mouse oocyte, immunofluorescence staining was used to examine the Fbf1 location in the oocyte and their phenotype after protein deletion. Western blot was used to examine the protein abundance. This study showed that mouse oocytes express Fbf1 which locates at the spindle poles and around the microtubules. Through taxol and nocodazole treatment, and microinjection of siRNA, it was demonstrated that Fbf1 had an important role in the spindle assembly and chromosome separation during mouse oocyte meiosis In particular, microinjection of Fbf1-siRNA resulted in severe abnormalities in the spindle and chromosome arrangement, decreased aggregation of microtubules, disrupted the first oocyte meiosis, and the extrusion of the first polar body. Furthermore, in the Fbf1-siRNA group, there was reduced expression of Plk1 and its agglutination at the spindle poles, along with retarded chromosome segregation due to the activation of the spindle assembly checkpoint (SAC) component BubR1. These results indicate that Fbf1 may function in microtubule depolymerization and agglutination, control the microtubule dynamics, spindle assembly and chromosome arrangement and, thus, influence the mouse oocyte meiotic maturation.


Subject(s)
Adaptor Proteins, Signal Transducing , Cell Cycle Proteins/metabolism , Meiosis , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/metabolism , Spindle Apparatus , Animals , Mice , Microtubules , Nocodazole , Oocytes , Polo-Like Kinase 1
5.
Biol Reprod ; 103(5): 1085-1098, 2020 10 29.
Article in English | MEDLINE | ID: mdl-32776126

ABSTRACT

Women with polycystic ovary syndrome (PCOS) are characterized by endocrine disorders accompanied by a decline in oocyte quality. In this study, we generated a PCOS mice model by hypodermic injection of dehydroepiandrosterone, and metformin was used as a positive control drug to study the effect of pachymic acid (PA) on endocrine and oocyte quality in PCOS mice. Compared with the model group, the mice treated with PA showed the following changes (slower weight gain, improved abnormal metabolism; increased development potential of GV oocytes, reduced number of abnormal MII oocytes, and damaged embryos; lower expression of ovarian-related genes in ovarian tissue and pro-inflammatory cytokines in adipose tissue). All these aspects show similar effects on metformin. Most notably, PA is superior to metformin in improving inflammation of adipose tissue and mitochondrial abnormalities. It is suggested that PA has the similar effect with metformin, which can improve the endocrine environment and oocyte quality of PCOS mice. These findings suggest that PA has the similar effect with metformin, which can improve the endocrine environment and oocyte quality of PCOS mice.


Subject(s)
Oocytes/drug effects , Ovary/drug effects , Polycystic Ovary Syndrome/metabolism , Triterpenes/pharmacology , Animals , Dehydroepiandrosterone , Disease Models, Animal , Female , Metformin/pharmacology , Mice , Oocytes/metabolism , Ovary/metabolism , Polycystic Ovary Syndrome/chemically induced
SELECTION OF CITATIONS
SEARCH DETAIL
...