Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
EClinicalMedicine ; 51: 101497, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35844773

ABSTRACT

Background: Diabetic foot and leg ulcers are a major cause of disability among patients with diabetes mellitus. A topical gel called ENERGI-F703, applied twice daily and with adenine as its active pharmaceutical ingredient, accelerated wound healing in diabetic mice. The current study evaluated the safety and efficacy of ENERGI-F703 for patients with diabetic foot and leg ulcers. Methods: This randomized, double-blind, multicenter, phase II trial recruited patients from eight medical centers in Taiwan. Patients with intractable diabetic foot and leg ulcers (Wagner Grade 1-3 without active osteomyelitis) were randomly assigned (2:1) to receive topical ENERGI-F703 gel or vehicle gel twice daily for 12 weeks or until complete ulcer closure. The investigator, enrolled patients and site personnel were masked to treatment allocation. Intention to treat (ITT) population and safety population were patient to primary analyses and safety analyses, respectively. Primary outcome was complete ulcer closure rate at the end of treatment. This trial is registered with ClinicalTrials.gov, number NCT02672436. Findings: Starting from March 15th, 2017 to December 26th, 2019, 141 patients were enrolled as safety population and randomized into ENERGI-F703 gel (n = 95) group or vehicle gel (n = 46) group. In ITT population, ENERGI-F703 (n = 90) and vehicle group showed ulcer closure rates of 36.7% (95% CI = 26.75% - 47.49%) and 26.2% (95% CI = 13.86% - 42.04%) with difference of 9.74 % (95 % CI = -6.74% - 26.23%) and 25% quartiles of the time to complete ulcer closure of 69 days and 84 days, respectively. There were 25 (26.3%) patients in ENERGI-F703 group and 11 (23.9%) patients in vehicle group experiencing serious adverse events and five deaths occurred during the study period, none of them related to the treatment. Interpretation: Our study suggests that ENERGI-F703 gel is a safe and well-tolerated treatment for chronic diabetic foot and leg ulcers. Further studies are needed to corroborate our findings in light of limitations. Funding: Energenesis Biomedical Co., Ltd.

2.
PeerJ ; 7: e6358, 2019.
Article in English | MEDLINE | ID: mdl-30723629

ABSTRACT

BACKGROUND: A tissue-engineered skin substitute, based on gelatin ("G"), collagen ("C"), and poly(ε-caprolactone) (PCL; "P"), was developed. METHOD: G/C/P biocomposites were fabricated by impregnation of lyophilized gelatin/collagen (GC) mats with PCL solutions, followed by solvent evaporation. Two different GC:PCL ratios (1:8 and 1:20) were used. RESULTS: Differential scanning calorimetry revealed that all G/C/P biocomposites had characteristic melting point of PCL at around 60 °C. Scanning electron microscopy showed that all biocomposites had similar fibrous structures. Good cytocompatibility was present in all G/C/P biocomposites when incubated with primary human epidermal keratinocytes (PHEK), human dermal fibroblasts (PHDF) and human adipose-derived stem cells (ASCs) in vitro. All G/C/P biocomposites exhibited similar cell growth and mechanical characteristics in comparison with C/P biocomposites. G/C/P biocomposites with a lower collagen content showed better cell proliferation than those with a higher collagen content in vitro. Due to reasonable mechanical strength and biocompatibility in vitro, G/C/P with a lower content of collagen and a higher content of PCL (GCLPH) was selected for animal wound healing studies. According to our data, a significant promotion in wound healing and skin regeneration could be observed in GCLPH seeded with adipose-derived stem cells by Gomori's trichrome staining. CONCLUSION: This study may provide an effective and low-cost wound dressings to assist skin regeneration for clinical use.

3.
Ann Plast Surg ; 82(1S Suppl 1): S119-S125, 2019 01.
Article in English | MEDLINE | ID: mdl-30516561

ABSTRACT

The pigment melanin is produced by melanocytes, is primarily responsible for skin color, and protects it against ultraviolet rays that can cause the destruction of genetic material within the keratinocytes. To elucidate the mechanisms of many diseases associated with melanocytes, such as melanoma and albinism, or burns with uneven pigment distribution, the disease model needs to be established first. In this study, we aimed to construct the melanocyte model from patients in a short period.Sandai virus vector containing 4 stemness genes (Oct4, Sox2, Klf4, c-Myc) was transfected into human adipose-derived stem cells to produce induced pluripotent stem cells (iPSCs). Immunofluorescence staining was used to confirm the expression of specific proteins for iPSCs, including Tra-1-60, Tra-1-81, Oct-4, Sox-2, and Nango. polymerase chain reaction results also showed that specific genes of iPSCs with the ability to cause the differentiation of cells into the 3 germ layers were expressed. In our in vivo experiments, iPSCs were subcutaneously injected into nude mice to induce teratoma formation for 2 months. The morphology of the 3 germ layers was confirmed by hematoxylin and eosin staining. Furthermore, melanocytes were purified by serial induction medium, and their presence was confirmed by flow cytometry and the expression of different markers for melanocytes.


Subject(s)
Cell Differentiation/physiology , Induced Pluripotent Stem Cells/cytology , Melanocytes/cytology , Teratoma/pathology , Adipocytes/cytology , Adipocytes/physiology , Animals , Biopsy, Needle , Cell Culture Techniques/methods , Cells, Cultured , China , Disease Models, Animal , Flow Cytometry , Humans , Immunohistochemistry , Induced Pluripotent Stem Cells/physiology , Kruppel-Like Factor 4 , Melanocytes/physiology , Mice , Mice, Inbred BALB C , Mice, Nude , Polymerase Chain Reaction/methods , Random Allocation , Teratoma/therapy
4.
Cell Transplant ; 27(10): 1535-1547, 2018 10.
Article in English | MEDLINE | ID: mdl-30203684

ABSTRACT

Skin substitutes with existing vascularization are in great demand for the repair of full-thickness skin defects. In the present study, we hypothesized that a pre-vascularized skin substitute can potentially promote wound healing. Novel three-dimensional (3D) skin substitutes were prepared by seeding a mixture of human endothelial progenitor cells (EPCs) and fibroblasts into a human plasma/calcium chloride formed gel scaffold, and seeding keratinocytes onto the surface of the plasma gel. The capacity of the EPCs to differentiate into a vascular-like tubular structure was evaluated using immunohistochemistry analysis and WST-8 assay. Experimental studies in mouse full-thickness skin wound models showed that the pre-vascularized gel scaffold significantly accelerated wound healing 7 days after surgery, and resembled normal skin structures after 14 days post-surgery. Histological analysis revealed that pre-vascularized gel scaffolds were well integrated in the host skin, resulting in the vascularization of both the epidermis and dermis in the wound area. Moreover, mechanical strength analysis demonstrated that the healed wound following the implantation of the pre-vascularized gel scaffolds exhibited good tensile strength. Taken together, this novel pre-vascularized human plasma gel scaffold has great potential in skin tissue engineering.


Subject(s)
Endothelial Progenitor Cells/cytology , Fibroblasts/cytology , Gels/chemistry , Keratinocytes/cytology , Plasma/chemistry , Skin, Artificial , Tissue Scaffolds/chemistry , Animals , Cells, Cultured , Humans , Mice, Inbred BALB C , Mice, Nude , Neovascularization, Physiologic , Skin/blood supply , Skin/cytology , Tensile Strength , Tissue Engineering/methods , Wound Healing
5.
Ann Plast Surg ; 80(2S Suppl 1): S66-S69, 2018 02.
Article in English | MEDLINE | ID: mdl-29369904

ABSTRACT

Platelet-rich plasma (PRP) is a kind of plasma that is rich in platelets after processing. It includes various growth factors and cytokines, which speed up the process of wound healing and hemostasis. The PRP solution used in this study is diluted from lyophilized PRP powder, which decreased the possibility of contamination, facilitated the storage, and prolonged the storage life. From in vitro fibroblast proliferation testing, the numbers of PRP supplement were performed for 1, 4, and 7 times by continuous replacement of culture medium each day. Four times of lyophilized PRP supplement was selected for clinical study due to sufficient promotion of fibroblast proliferation. Next, 27 patients of deep second-degree burn wound were included in this study. Patients were assigned to two groups: PRP group (n = 15) and control group (n = 12). A concentration of 1.0 × 10 platelets/cm (wound area) according to wound size was sprayed on the wound evenly. Function was mainly assessed by the percentage of wound closure and bacteria picking out rate in 2 and 3 weeks. The wound closure at 3 weeks showed a significant difference in PRP group (P < 0.05). The healing rate of PRP group reached nearly 80% and made a breakthrough of 90% in 3 weeks, showing a significant difference compared with the control group (P < 0.05). Lyophilized PRP can be considered as an effective treatment to increase healing rate in patients with deep second-degree burn injury.


Subject(s)
Burns/pathology , Burns/therapy , Occlusive Dressings , Platelet-Rich Plasma , Wound Healing/physiology , Body Surface Area , Cell Proliferation/drug effects , Double-Blind Method , Female , Fibroblasts/cytology , Fibroblasts/physiology , Humans , Injury Severity Score , Male , Powders/therapeutic use , Prognosis , Prospective Studies , Treatment Outcome
6.
Ann Plast Surg ; 78(3 Suppl 2): S135-S138, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28166140

ABSTRACT

BACKGROUND: Human cadaveric skin grafts are considered as the "gold standard" for temporary wound coverage because they provide a more conductive environment for natural wound healing. Lyophilization, packing, and terminal sterilization with gamma-ray can facilitate the application of cadaveric split-thickness skin grafts, but may alter the adhesion properties of the grafts. In a pilot study, we found that 500 Gy γ-irradiation seemed not to reduce the adherence between the grafts and wound beds. AIM AND OBJECTIVES: We conducted this experiment to compare the adherences of lyophilized, 500-Gy γ-irradiated skin grafts to that of lyophilized, nonirradiated grafts. MATERIALS AND METHODS: Pairs of wounds were created over the backs of Sprague- Dawley rats. Pairs of "lyophilized, 500-Gy γ-irradiated" and "lyophilized, nonirradiated" cadaveric split-thickness skin grafts were fixed to the wound beds. Adhesion strength between the grafts and the wound beds was measured and compared. RESULTS: On post-skin-graft day 7 and day 10, the adhesion strength of γ-irradiated grafts was greater than that of the nonirradiated grafts. CONCLUSIONS: Because lyophilized cadaveric skin grafts can be vascularized and the collagen of its dermal component can be remodeled after grafting, the superior adhesion strength of 500-Gy γ-irradiated grafts can be explained by the collagen changes from irradiation.


Subject(s)
Cell Adhesion/radiation effects , Freeze Drying , Skin Transplantation/methods , Skin/radiation effects , Sterilization/methods , Wound Closure Techniques , Animals , Cadaver , Gamma Rays , Humans , Pilot Projects , Rats , Rats, Sprague-Dawley
7.
Ann Plast Surg ; 78(3 Suppl 2): S148-S152, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28129211

ABSTRACT

BACKGROUND: Although tendon-exposed or bone-exposed wounds can be resurfaced with flaps, such surgeries may not be feasible in patients with poor general or local conditions. Biosynthetic artificial skin is an alternative for critical wound coverage. We designed a new artificial skin bilayer to close difficult wounds permanently. AIM AND OBJECTIVES: This study compares incorporation and wound contraction between silicone acellular porcine dermis (SAPD) and the Integra graft (Integra Life Sciences Corp., Billerica, Mass) in a rat model. MATERIALS AND METHODS: The SAPD was manufactured according to our previously described standard procedures. Integra grafts were obtained commercially. We included 24 male adult Sprague-Dawley rats and divided them into 2 groups. After creating a 3 × 4-cm full-thickness wound on the back, we transplanted the same-sized SAPD and Integra grafts onto the rat wounds. Autologous full-thickness skin (FTS) was grafted onto the acellular porcine dermal matrix (APDM) of the SAPD and the Integra dermal matrix (IDM) 2 weeks later. We measured the wound size and contraction rate of recipient wounds, studied the incorporation of FTS on the dermal matrix, and did pathological examination. Generalized estimating equations were used to assess the data from repeated wound and scar contraction measurements using SAS v9.2. RESULTS: The sizes of wounds of both groups decreased over time. No difference in wound contraction was observed between the SAPD and Integra groups at weeks 2, 4, or 6 after grafting. However, the contraction rates in both groups increased significantly. The pathological examination showed that the FTS was well incorporated in the APDM and IDM. The recipient wounds showed new vessels and cell infiltration in the new matrix, but no severe inflammation. Skin appendages were regenerating in the FTS. There was no rejection sign. CONCLUSIONS: Both SAPD and Integra are double-layered artificial skin products. Our results demonstrate that APDM and IDM are good templates and show excellent incorporation with autologous FTS graft. The results also demonstrated gradual wound contraction over time, but the contraction rate was not different between SAPD and Integra 6 weeks after grafting in a rat model.


Subject(s)
Chondroitin Sulfates/pharmacology , Collagen/pharmacology , Skin Transplantation/methods , Wound Closure Techniques , Wound Healing/physiology , Acellular Dermis , Animals , Cicatrix/pathology , Contracture/pathology , Disease Models, Animal , Male , Rats , Rats, Sprague-Dawley , Swine , Transplantation, Autologous
8.
Ann Plast Surg ; 76 Suppl 1: S130-2, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26855166

ABSTRACT

Tourniquets are often needed for optimized phalangeal surgeries. However, few surgeons forget to remove them and caused ischemic injuries. We have a modified method to create a safe finger tourniquet for short duration finger surgeries, which can avoid such tragedy. It is done by donning a glove, cutting the tip of the glove over the finger of interest, and rolling the glove finger to the base. From 2010 to 2013, approximately 54 patients underwent digital surgical procedures with our safe finger tourniquet. Because the glove cannot be forgotten to be removed, the tourniquet must be released and removed. This is a simple and efficient way to apply a safe finger tourniquet by using hand rubber glove for a short-term bloodless finger surgery and can achieve an excellent surgical result.


Subject(s)
Finger Injuries/surgery , Gloves, Surgical , Tourniquets , Follow-Up Studies , Humans , Patient Safety , Tourniquets/adverse effects
9.
Burns ; 31(8): 991-7, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16274930

ABSTRACT

Temporary dressings protect wounds from desiccation and infection. In our previous study, we used meshed acellular porcine dermis (APD) to enhance wound healing and decrease wound contraction; however, the wounds showed meshed scar. In this study, we produced an artificial skin composed of a cross-linked silicon sheet on the surface of APD which we have called silicone acellular porcine dermis (SAPD). This new artificial skin can protect the wound long enough to promote wound healing either by second intention or covered long enough until cultured epithelium autograft (CEA) or autologous skin graft can be harvested for permanent coverage. We delivered 4 cm x 5 cm full-thickness wound on the back of 350 g Sprague-Dawley rats. Thirty-six rats were divided into two groups. Eighteen rats had SAPD and the other 18 were covered with Biobrane. The wounds were first examined 2 weeks after grafting and followed weekly for an additional 4 weeks to evaluate the wound and study pathological changes by using H.E. and Masson's stains. Wound size was calculated by ruler and analyzed by Student's t-test. At the 2-week inspection, both SAPD and Biobrane showed tight adherence to the wound with no change of wound size. Both the SAPD and Biobrane dermal templates were pink. In the Biobrane-covered group, the wounds contracted soon after the tie-over dressing was removed. Its dermal layer is a layer of thin porcine dermal substance, which was promptly digested by tissue hyaluronidase and provides no real dermal template. In the SAPD-covered group however, the wound size was maintained significantly from third to sixth week after grafting (p<0.001). SAPD was designed with thick epidermal silicone and a well-organized porcine dermis so that it incorporates into the recipient wound. Clinically the silicone layer of SAPD dislodged from APD about 6-7 weeks after grafting and was followed by dermal matrix exposure and infection. In pathological examination, much like a human skin graft, new vessels were found in APD about 1 week after grafting with minimal inflammatory cells infiltrated in the graft and wound. Six weeks after grafting, the collagen of APD incorporated into the wound, showing palisade arrangement and no sign of rejection. In the Biobrane group however, the wounds showed severe inflammation, the porcine dermal matrix was digested and disappeared 3 weeks after coverage. In conclusion, SAPD is a thick biosynthetic artificial skin, which protects the rat wound significantly longer than Biobrane and prevents contraction. We expect that using of SAPD for temporary wound coverage will provide enough time to grow autologous-cultured epithelium or to reharvest skin grafts.


Subject(s)
Burns/surgery , Skin Transplantation/methods , Skin, Artificial , Wound Healing , Animals , Burns/pathology , Coated Materials, Biocompatible/therapeutic use , Rats , Rats, Sprague-Dawley , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...