Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Front Oncol ; 10: 1674, 2020.
Article in English | MEDLINE | ID: mdl-32974207

ABSTRACT

BACKGROUND: Intraoperative confocal microscopy can enable high-resolution cross-sectional imaging of intact tissues as a non-invasive real-time alternative to gold-standard histology. However, all current means of intraoperative confocal microscopy are hindered by a limited field of view (FOV), presenting a challenge for evaluating gliomas, which are highly heterogeneous. OBJECTIVE: This study explored the use of image mosaicking with handheld dual-axis confocal (DAC) microscopy of fresh human glioma specimens. METHODS: In this preliminary technical feasibility study, fresh human glioma specimens from 6 patients were labeled with a fast-acting topical stain (acridine orange) and imaged using a newly developed DAC microscope prototype. RESULTS: In comparison to individual image frames with small fields of view, mosaicked images from a DAC microscope correlate better with gold-standard H&E-stained histology images, including the ability to visualize gradual transitions from areas of dense cellularity to sparse cellularity within the tumor. CONCLUSION: LS-DAC microscopy provides high-resolution, high-contrast images of glioma tissues that agree with corresponding H&E histology. Compared with individual image frames, mosaicked images provide more accurate representations of the overall cytoarchitecture of heterogeneous glioma tissues. Further investigation is needed to evaluate the ability of high-resolution mosaicked microscopy to improve the extent of glioma resection and patient outcomes.

2.
J Biophotonics ; 13(6): e202000048, 2020 06.
Article in English | MEDLINE | ID: mdl-32246558

ABSTRACT

Handheld and endoscopic optical-sectioning microscopes are being developed for noninvasive screening and intraoperative consultation. Imaging a large extent of tissue is often desired, but miniature in vivo microscopes tend to suffer from limited fields of view. To extend the imaging field during clinical use, we have developed a real-time video mosaicking method, which allows users to efficiently survey larger areas of tissue. Here, we modified a previous post-processing mosaicking method so that real-time mosaicking is possible at >30 frames/second when using a device that outputs images that are 400 × 400 pixels in size. Unlike other real-time mosaicking methods, our strategy can accommodate image rotations and deformations that often occur during clinical use of a handheld microscope. We perform a feasibility study to demonstrate that the use of real-time mosaicking is necessary to enable efficient sampling of a desired imaging field when using a handheld dual-axis confocal microscope.


Subject(s)
Intravital Microscopy , Microscopy , Endoscopy , Microscopy, Confocal
3.
Nat Commun ; 10(1): 2781, 2019 07 04.
Article in English | MEDLINE | ID: mdl-31273194

ABSTRACT

Recent advances in optical clearing and light-sheet microscopy have provided unprecedented access to structural and molecular information from intact tissues. However, current light-sheet microscopes have imposed constraints on the size, shape, number of specimens, and compatibility with various clearing protocols. Here we present a multi-immersion open-top light-sheet microscope that enables simple mounting of multiple specimens processed with a variety of clearing protocols, which will facilitate wide adoption by preclinical researchers and clinical laboratories. In particular, the open-top geometry provides unsurpassed versatility to interface with a wide range of accessory technologies in the future.


Subject(s)
Microscopy, Fluorescence/methods , Animals , Brain/diagnostic imaging , Equipment Design , Humans , Imaging, Three-Dimensional/instrumentation , Imaging, Three-Dimensional/methods , Lung/diagnostic imaging , Lymph Nodes/diagnostic imaging , Male , Mice , Microscopy, Fluorescence/instrumentation , Prostate/diagnostic imaging
4.
Front Oncol ; 9: 592, 2019.
Article in English | MEDLINE | ID: mdl-31334117

ABSTRACT

Low-power fluorescence microscopy of 5-ALA-induced PpIX has emerged as a valuable intraoperative imaging technology for improving the resection of malignant gliomas. However, current fluorescence imaging tools are not highly sensitive nor quantitative, which limits their effectiveness for optimizing operative decisions near the surgical margins of gliomas, in particular non-enhancing low-grade gliomas. Intraoperative high-resolution optical-sectioning microscopy can potentially serve as a valuable complement to low-power fluorescence microscopy by providing reproducible quantification of tumor parameters at the infiltrative margins of diffuse gliomas. In this forward-looking perspective article, we provide a brief discussion of recent technical advancements, pilot clinical studies, and our vision of the future adoption of handheld optical-sectioning microscopy at the final stages of glioma surgeries to enhance the extent of resection. We list a number of challenges for clinical acceptance, as well as potential strategies to overcome such obstacles for the surgical implementation of these in vivo microscopy techniques.

5.
Article in English | MEDLINE | ID: mdl-30872909

ABSTRACT

Dual-axis confocal (DAC) microscopy is an optical imaging modality that utilizes simple low-numerical aperture (NA) lenses to achieve effective optical sectioning and superior image contrast in biological tissues. The unique architecture of DAC microscopy also provides some advantages for miniaturization, facilitating the development of endoscopic and handheld DAC systems for in vivo imaging. This article reviews the principles of DAC microscopy, including its differences from conventional confocal microscopy, and surveys several variations of DAC microscopy that have been developed and investigated as non-invasive real-time alternatives to conventional biopsy and histopathology.

6.
J Biomed Opt ; 24(2): 1-11, 2019 02.
Article in English | MEDLINE | ID: mdl-30737911

ABSTRACT

Intraoperative assessment of breast surgical margins will be of value for reducing the rate of re-excision surgeries for lumpectomy patients. While frozen-section histology is used for intraoperative guidance of certain cancers, it provides limited sampling of the margin surface (typically <1 % of the margin) and is inferior to gold-standard histology, especially for fatty tissues that do not freeze well, such as breast specimens. Microscopy with ultraviolet surface excitation (MUSE) is a nondestructive superficial optical-sectioning technique that has the potential to enable rapid, high-resolution examination of excised margin surfaces. Here, a MUSE system is developed with fully automated sample translation to image fresh tissue surfaces over large areas and at multiple levels of defocus, at a rate of ∼5 min / cm2. Surface extraction is used to improve the comprehensiveness of surface imaging, and 3-D deconvolution is used to improve resolution and contrast. In addition, an improved fluorescent analog of conventional H&E staining is developed to label fresh tissues within ∼5 min for MUSE imaging. We compare the image quality of our MUSE system with both frozen-section and conventional H&E histology, demonstrating the feasibility to provide microscopic visualization of breast margin surfaces at speeds that are relevant for intraoperative use.


Subject(s)
Breast Neoplasms/diagnostic imaging , Breast/diagnostic imaging , Margins of Excision , Microscopy, Ultraviolet/methods , Optical Imaging/methods , Animals , Breast/surgery , Breast Neoplasms/surgery , Carcinoma/diagnostic imaging , Carcinoma/surgery , Female , Frozen Sections , Humans , Image Processing, Computer-Assisted , Imaging, Three-Dimensional , Kidney/diagnostic imaging , Mastectomy, Segmental , Mice , Microscopy, Fluorescence/methods , Microscopy, Ultraviolet/instrumentation , Optical Imaging/instrumentation , Surface Properties
7.
Opt Lett ; 44(3): 671-674, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30702707

ABSTRACT

A handheld line-scanned dual-axis confocal (LS-DAC) microscope has been developed for high-speed (16 frames/s) fluorescence imaging of tissues with sub-nuclear resolution. This is the first miniature fluorescence LS-DAC system that has been fully packaged for handheld clinical use on patients. A novel micro-electro-mechanical system scanning mechanism, with synchronized tilting and pistoning, is used to achieve flat-field en face imaging. We show that this facilitates video mosaicking to generate images that sample an extended lateral field of view.


Subject(s)
Micro-Electrical-Mechanical Systems , Microscopy, Confocal/instrumentation , Optical Imaging/instrumentation , Animals , Equipment Design , Image Processing, Computer-Assisted , Kidney/diagnostic imaging , Mice
8.
J Biomed Opt ; 24(3): 30501, 2019 03 27.
Article in English | MEDLINE | ID: mdl-32717147

ABSTRACT

There would be clinical value in a miniature optical-sectioning microscope to enable in vivo interrogation of tissues as a real-time and noninvasive alternative to gold-standard histopathology for early disease detection and surgical guidance. To address this need, a reflectance-based handheld line-scanned dual-axis confocal microscope was developed and fully packaged for label-free imaging of human skin and oral mucosa. This device can collect images at >15 frames/s with an optical-sectioning thickness and lateral resolution of 1.7 and 1.1 µm, respectively. Incorporation of a sterile lens cap design enables pressure-sensitive adjustment of the imaging depth by the user during clinical use. In vivo human images and videos are obtained to demonstrate the capabilities of this high-speed optical-sectioning microscopy device.


Subject(s)
Epidermis/pathology , Microscopy, Confocal/instrumentation , Mouth Mucosa/pathology , Equipment Design , Humans , Lenses , Microscopy, Video/instrumentation , Optical Devices , Optical Phenomena
9.
J Neurooncol ; 141(3): 495-505, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30554344

ABSTRACT

INTRODUCTION: 5-ALA-based fluorescence-guided surgery has been shown to be a safe and effective method to improve intraoperative visualization and resection of malignant gliomas. However, it remains ineffective in guiding the resection of lower-grade, non-enhancing, and deep-seated tumors, mainly because these tumors do not produce detectable fluorescence with conventional visualization technologies, namely, wide-field (WF) surgical microscopy. METHODS: We describe some of the main factors that limit the sensitivity and accuracy of conventional WF surgical microscopy, and then provide a survey of commercial and research prototypes being developed to address these challenges, along with their principles, advantages and disadvantages, as well as the current status of clinical translation for each technology. We also provide a neurosurgical perspective on how these visualization technologies might best be implemented for guiding glioma surgeries in the future. RESULTS: Detection of PpIX expression in low-grade gliomas and at the infiltrative margins of all gliomas has been achieved with high-sensitivity probe-based visualization techniques. Deep-tissue PpIX imaging of up to 5 mm has also been achieved using red-light illumination techniques. Spectroscopic approaches have enabled more accurate quantification of PpIX expression. CONCLUSION: Advancements in visualization technologies have extended the sensitivity and accuracy of conventional WF surgical microscopy. These technologies will continue to be refined to further improve the extent of resection in glioma patients using 5-ALA-induced fluorescence.


Subject(s)
Aminolevulinic Acid , Fluorescent Dyes , Optical Imaging , Surgery, Computer-Assisted , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/surgery , Glioma/diagnostic imaging , Glioma/surgery , Humans , Neurosurgical Procedures , Optical Imaging/methods
10.
Sci Rep ; 8(1): 13878, 2018 09 17.
Article in English | MEDLINE | ID: mdl-30224740

ABSTRACT

Light-sheet fluorescence microscopy (LSFM) has emerged as a powerful method for rapid and optically efficient 3D microscopy. Initial LSFM designs utilized a static sheet of light, termed selective plane illumination microscopy (SPIM), which exhibited shadowing artifacts and deteriorated contrast due to light scattering. These issues have been addressed, in part, by multidirectional selective plane illumination microscopy (mSPIM), in which rotation of the light sheet is used to mitigate shadowing artifacts, and digital scanned light-sheet microscopy (DSLM), in which confocal line detection is used to reject scattered light. Here we present a simple and passive multidirectional digital scanned light-sheet microscopy (mDSLM) architecture that combines the benefits of mSPIM and DSLM. By utilizing an elliptical Gaussian beam with increased angular diversity in the imaging plane, mDSLM provides mitigation of shadowing artifacts and contrast-enhanced imaging of fluorescently labeled samples.


Subject(s)
Microscopy, Fluorescence/methods , Animals , Artifacts , Fluorescence , Humans , Image Processing, Computer-Assisted , Mice
12.
ACS Infect Dis ; 4(6): 918-925, 2018 06 08.
Article in English | MEDLINE | ID: mdl-29708735

ABSTRACT

The study of the bacterial periplasm requires techniques with sufficient spatial resolution and sensitivity to resolve the components and processes within this subcellular compartment. Peroxidase-mediated biotinylation has enabled targeted labeling of proteins within subcellular compartments of mammalian cells. We investigated whether this methodology could be applied to the bacterial periplasm. In this study, we demonstrated that peroxidase-mediated biotinylation can be performed in mycobacteria and Escherichia coli. To eliminate detection artifacts from natively biotinylated mycobacterial proteins, we validated two alternative labeling substrates, tyramide azide and tyramide alkyne, which enable biotin-independent detection of labeled proteins. We also targeted peroxidase expression to the periplasm, resulting in compartment-specific labeling of periplasmic versus cytoplasmic proteins in mycobacteria. Finally, we showed that this method can be used to validate protein relocalization to the cytoplasm upon removal of a secretion signal. This novel application of peroxidase-mediated protein labeling will advance efforts to characterize the role of the periplasm in bacterial physiology and pathogenesis.


Subject(s)
Bacterial Proteins/chemistry , Biotin , Periplasmic Proteins/chemistry , Peroxidase , Staining and Labeling , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biotin/chemistry , Biotinylation , Click Chemistry , Cytoplasm , Escherichia coli/metabolism , Periplasmic Proteins/genetics , Periplasmic Proteins/metabolism , Peroxidase/chemistry , Peroxidase/metabolism , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism
13.
J Biomed Opt ; 22(4): 46005, 2017 04 01.
Article in English | MEDLINE | ID: mdl-28418534

ABSTRACT

Systemic delivery of 5-aminolevulinic acid leads to enhanced fluorescence image contrast in many tumors due to the increased accumulation of protoporphyrin IX (PpIX), a fluorescent porphyrin that is associated with tumor burden and proliferation. The value of PpIX-guided resection of malignant gliomas has been demonstrated in prospective randomized clinical studies in which a twofold greater extent of resection and improved progression-free survival have been observed. In low-grade gliomas and at the diffuse infiltrative margins of all gliomas, PpIX fluorescence is often too weak to be detected with current low-resolution surgical microscopes that are used in operating rooms. However, it has been demonstrated that high-resolution optical-sectioning microscopes are capable of detecting the sparse and punctate accumulations of PpIX that are undetectable via conventional low-power surgical fluorescence microscopes. To standardize the performance of high-resolution optical-sectioning devices for future clinical use, we have developed an imaging phantom and methods to ensure that the imaging of PpIX-expressing brain tissues can be performed reproducibly. Ex vivo imaging studies with a dual-axis confocal microscope demonstrate that these methods enable the acquisition of images from unsectioned human brain tissues that quantitatively and consistently correlate with images of histologically processed tissue sections.


Subject(s)
Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Glioma/diagnostic imaging , Glioma/pathology , Microscopy, Fluorescence , Optics and Photonics , Algorithms , Aminolevulinic Acid/administration & dosage , Diagnostic Imaging , Disease-Free Survival , Humans , Microscopy, Confocal , Phantoms, Imaging , Protoporphyrins , Sepharose/chemistry , Signal-To-Noise Ratio
14.
Nat Biomed Eng ; 1(7)2017 Jul.
Article in English | MEDLINE | ID: mdl-29750130

ABSTRACT

For the 1.7 million patients per year in the U.S. who receive a new cancer diagnosis, treatment decisions are largely made after a histopathology exam. Unfortunately, the gold standard of slide-based microscopic pathology suffers from high inter-observer variability and limited prognostic value due to sampling limitations and the inability to visualize tissue structures and molecular targets in their native 3D context. Here, we show that an open-top light-sheet microscope optimized for non-destructive slide-free pathology of clinical specimens enables the rapid imaging of intact tissues at high resolution over large 2D and 3D fields of view, with the same level of detail as traditional pathology. We demonstrate the utility of this technology for various applications: wide-area surface microscopy to triage surgical specimens (with ~200 µm surface irregularities), rapid intraoperative assessment of tumour-margin surfaces (12.5 sec/cm2), and volumetric assessment of optically cleared core-needle biopsies (1 mm in diameter, 2 cm in length). Light-sheet microscopy can be a versatile tool for both rapid surface microscopy and deep volumetric microscopy of human specimens.

SELECTION OF CITATIONS
SEARCH DETAIL
...