Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Org Biomol Chem ; 22(7): 1386-1390, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38276964

ABSTRACT

A variety of 4-(trichloromethyl)pyrido[2',1':3,4]pyrazino[2,1-b]quinazolinones were prepared in moderate to good yields with high regioselectivity through intramolecular 6-endo-dig cyclization and trichloromethylation of N3-alkynyl-2-pyridinyl-tethered quinazolinones in chloroform. Mechanistic studies revealed that chloroform might serve as a trichloromethyl anion precursor. Furthermore, the reaction could be easily performed on gram scales and an estrone-derived 4-(trichloromethyl)pyrido[2',1':3,4]pyrazino[2,1-b]quinazolinone was prepared over five steps. The present method features broad substrate scope, good functional group tolerance, new dearomatization of pyridine rings, and chloroform as the trichloromethylation reagent.

2.
PLoS One ; 18(2): e0280656, 2023.
Article in English | MEDLINE | ID: mdl-36730356

ABSTRACT

Gemcitabine is an antineoplastic drug commonly used in the treatment of several types of cancers including pancreatic cancer and non-small cell lung cancer. Although gemcitabine-induced cardiotoxicity is widely recognized, the exact mechanism of cardiac dysfunction causing arrhythmias remains unclear. The objective of this study was to electrophysiologically evaluate the proarrhythmic cardiotoxicity of gemcitabine focusing on the human rapid delayed rectifier potassium channel, hERG channel. In heterologous hERG expressing HEK293 cells (hERG-HEK cells), hERG channel current (IhERG) was reduced by gemcitabine when applied for 24 h but not immediately after the application. Gemcitabine modified the activation gating properties of the hERG channel toward the hyperpolarization direction, while inactivation, deactivation or reactivation gating properties were unaffected by gemcitabine. When gemcitabine was applied to hERG-HEK cells in combined with tunicamycin, an inhibitor of N-acetylglucosamine phosphotransferase, gemcitabine was unable to reduce IhERG or shift the activation properties toward the hyperpolarization direction. While a mannosidase I inhibitor kifunensine alone reduced IhERG and the reduction was even larger in combined with gemcitabine, kifunensine was without effect on IhERG when hERG-HEK cells were pretreated with gemcitabine for 24 h. In addition, gemcitabine down-regulated fluorescence intensity for hERG potassium channel protein in rat neonatal cardiomyocyte, although hERG mRNA was unchanged. Our results suggest the possible mechanism of arrhythmias caused by gemcitabine revealing a down-regulation of IhERG through the post-translational glycosylation disruption possibly at the early phase of hERG channel glycosylation in the endoplasmic reticulum that alters the electrical excitability of cells.


Subject(s)
Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Animals , Rats , Gemcitabine , ERG1 Potassium Channel/genetics , ERG1 Potassium Channel/metabolism , Down-Regulation , Cardiotoxicity/etiology , HEK293 Cells , Arrhythmias, Cardiac/chemically induced , Arrhythmias, Cardiac/genetics , Delayed Rectifier Potassium Channels/genetics , Delayed Rectifier Potassium Channels/metabolism , Ether-A-Go-Go Potassium Channels/genetics , Ether-A-Go-Go Potassium Channels/metabolism
3.
Urogynecology (Phila) ; 28(9): 616-623, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35703292

ABSTRACT

OBJECTIVE: The aim of this study was to observe the effect of nuclear factor-erythroid 2-related factor 2 (Nrf2) on the phenotype changes of macrophages in the anterior vaginal wall of patients with pelvic organ prolapse (POP). METHODS: The tissues of the anterior vaginal wall of the control group (n = 30) and POP groups (n = 60) were collected during operation. The expressions of Nrf2, iNOS (representative factor of M1 macrophages), and CD206 (representative factor of M2 macrophages) were determined by immunohistochemical staining and Western blot. Morphological changes and collagen distribution of the anterior vaginal wall were observed by hematoxylin-eosin staining and Masson trichrome staining. RESULTS: Compared with the control group, the expression levels of Nrf2 and CD206 protein in the anterior vaginal wall tissues of the POP groups were significantly decreased ( P < 0.05), and were negatively proportional to the degree of prolapse ( P < 0.05). The expression of iNOS was significantly increased and was directly proportional to the degree of prolapse ( P < 0.05). Hematoxylin-eosin staining and Masson trichrome staining showed that the collagen fibers are more sparsely arranged and disordered in the POP group than the control. CONCLUSIONS: In patients with POP, the expression of antioxidant factor Nrf2 is reduced in the vaginal anterior wall tissues and the antioxidant capacity is weakened, leading to the blocked polarization of macrophages and the accumulation of a large number of M1 macrophages in the tissue, affecting the occurrence and development of POP.


Subject(s)
NF-E2-Related Factor 2 , Pelvic Organ Prolapse , Female , Humans , Antioxidants , Collagen/genetics , Macrophages/metabolism , NF-E2-Related Factor 2/genetics , Pelvic Organ Prolapse/genetics , Phenotype
4.
Sci Rep ; 11(1): 11273, 2021 05 28.
Article in English | MEDLINE | ID: mdl-34050231

ABSTRACT

Nitric oxide (NO) is produced from endothelial cells and cardiomyocytes composing the myocardium and benefits cardiac function through both vascular-dependent and-independent effects. This study was purposed to investigate the possible adverse effect of NO focusing on the voltage-gated Na+ channel in cardiomyocytes. We carried out patch-clamp experiments on rat neonatal cardiomyocytes demonstrating that NOC-18, an NO donor, significantly reduced Na+ channel current in a dose-dependent manner by a long-term application for 24 h, accompanied by a reduction of Nav1.5-mRNA and the protein, and an increase of a transcription factor forkhead box protein O1 (FOXO1) in the nucleus. The effect of NOC-18 on the Na+ channel was blocked by an inhibitor of thiol oxidation N-ethylmaleimide, a disulfide reducing agent disulfide 1,4-Dithioerythritol, or a FOXO1 activator paclitaxel, suggesting that NO is a negative regulator of the voltage-gated Na+ channel through thiols in regulatory protein(s) for the channel transcription.


Subject(s)
Myocytes, Cardiac/physiology , Nitric Oxide/metabolism , Voltage-Gated Sodium Channels/metabolism , Animals , Animals, Newborn , Cell Nucleus/metabolism , Endothelial Cells/metabolism , Forkhead Box Protein O1/metabolism , Gene Expression Regulation , Myocardium/metabolism , Myocytes, Cardiac/metabolism , NAV1.5 Voltage-Gated Sodium Channel/genetics , Nitric Oxide/physiology , Nitroso Compounds/metabolism , Nitroso Compounds/pharmacology , Patch-Clamp Techniques , Rats , Rats, Wistar , Signal Transduction , Sodium/metabolism , Voltage-Gated Sodium Channels/drug effects
5.
Heart Vessels ; 36(4): 589-596, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33392644

ABSTRACT

SCN5A gene encodes the voltage-gated sodium channel NaV1.5 which is composed of a pore-forming α subunit of the channel. Asparagine (N)-linked glycosylation is one of the common post-translational modifications in proteins. The aim of this study was to investigate impact of N-linked glycosylation disruption on the Na+ channel, and the mechanism by which glycosylation regulates the current density and gating properties of the Na+ channel. The NaV1.5-Na+ channel isoform (α submit) derived from human was stably expressed in human embryonic kidney (HEK)-293 cells (Nav1.5-HEK cell). We applied the whole-cell patch-clamp technique to study the impact of N-linked glycosylation disruption in Nav1.5-HEK cell. Inhibition of the N-glycosylation with tunicamycin caused a significant increase of NaV1.5 channel current (INa) when applied for 24 h. Tunicamycin shifted the steady-state inactivation curve to the hyperpolarization direction, whereas the activation curve was unaffected. Recovery from inactivation was prolonged, while the fast phase (τfast) and the slow phase (τslow) of the current decay was unaffected by tunicamycin. INa was unaffected by tunicamycin in the present of a proteasome inhibitor MG132 [N-[(phenylmethoxy)carbonyl]-L-leucy-N-[(1S)-1-formyl-3-methylbutyl]-L-leucinamide], while it was significantly increased by tunicamycin in the presence of a lysosome inhibitor butyl methacrylate (BMA). These findings suggest that N-glycosylation disruption rescues the NaV1.5 channel possibly through the alteration of ubiquitin-proteasome activity, and changes gating properties of the NaV1.5 channel by modulating glycan milieu of the channel protein.


Subject(s)
Asparagine/metabolism , Membrane Potentials/physiology , Myocytes, Cardiac/metabolism , NAV1.5 Voltage-Gated Sodium Channel/metabolism , Animals , Animals, Newborn , Cells, Cultured , Glycosylation , Humans , Models, Animal , Myocytes, Cardiac/cytology , Patch-Clamp Techniques , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...