Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Nano Lett ; 24(14): 4124-4131, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38483552

ABSTRACT

Dynamic reversible noncovalent interactions make supramolecular framework (SF) structures flexible and designable. A three-dimensional (3D) growth of such frameworks is beneficial to improve the structure stability while maintaining unique properties. Here, through the ionic interaction of the polyoxometalate cluster, coordination of zinc ions with cationic terpyridine, and hydrogen bonding of grafted carboxyl groups, the construction of a 3D SF at a well-crystallized state is realized. The framework can grow in situ on the Zn surface, further extending laterally into a full covering without defects. Relying on the dissolution and the postcoordination effects, the 3D SF layer is used as an artificial solid electrolyte interphase to improve the Zn-anode performance. The uniformly distributed clusters within nanosized pores create a negatively charged nanochannel, accelerating zinc ion transfer and homogenizing zinc deposition. The 3D SF/Zn symmetric cells demonstrate high stability for over 3000 h at a current density of 5 mA cm-2.

3.
Chem Commun (Camb) ; 59(86): 12895-12898, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37819264

ABSTRACT

A two-dimensional supramolecular framework with a tetragonal structure is constructed via host-guest interaction of a pillar[5]arene grafted polyanion with a modified porphyrin. The membrane of the framework with a chiral counterion exhibits enantiomeric selectivity during the filtration of racemic molecules with amino groups, demonstrating broadened potential in chiral separations.

4.
Cell Oncol (Dordr) ; 46(5): 1213-1234, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37166744

ABSTRACT

PURPOSE: In this study, we assessed whether the overexpression of MAP3K1 promotes the proliferation, migration, and invasion of breast cancer cells, which affect the prognosis of hormone receptor (HR)-positive, human epidermal growth factor receptor 2 (HER2)-negative early stage breast cancer. METHODS: Two HR-positive, HER2-negative breast cancer cell lines (MCF7 and T-47D) overexpressing MAP3K1 were transfected with two MAP3K1 short hairpin RNA plasmids (shMAP3K1 [#3] and shMAP3K1 [#5]). The proliferation, migration, and invasion of these cells were then examined. We assessed whether shMAP3K1 affects the cell cycle, levels of downstream signaling molecules (ERK, JNK, p38 MAPK, and NF-κB), and sensitivity to chemotherapeutic and hormonal agents. To assess the anti-tumor effect of MAP3K1 knockdown in the breast cancer orthotopic model, MCF7 and T-47D cells treated with or without shMAP3K1 (#3) and shMAP3K1 (#5) were inoculated into the mammary fat pads of mice. In total, 182 patients with HR-positive, HER2-negative T1 and T2 breast cancer and 0-3 nodal metastases were included. Additionally, 73 patients with T1 and T2 breast cancer and negative nodes who received adjuvant endocrine therapy alone were selected as an independent validation cohort. RESULTS: In both cell lines, shMAP3K1 (#3) and shMAP3K1 (#5) significantly reduced cell growth, migration, and invasion by downregulating MMP-9 and by blocking the G2/M phase of the cell cycle and its regulatory molecule cyclin B1. Moreover, both shMAP3K1 (#3) and shMAP3K1 (#5) downregulated ERK-, JNK-, p38 MAPK-, and NF-κB-dependent gene transcription and enhanced the sensitivity of both cell lines to doxorubicin, docetaxel, and tamoxifen. We observed that both shMAP3K1 (#3) and shMAP3K1 (#5) inhibited tumor growth compared with that in the scrambled group of MCF7 and T-47D cell orthotopic tumors. Patients with MAP3K1 overexpression exhibited significantly poorer 10-year disease-free survival (DFS) (70.4% vs. 88.6%, p = 0.003) and overall survival (OS) (81.9% vs. 96.3%, p = 0.001) than those without MAP3K1 overexpression. Furthermore, phospho-ERK (p < 0.001) and phospho-JNK (p < 0.001) expressions were significantly associated with MAP3K1 expression, and both phospho-ERK and phospho-JNK expressions were significantly correlated with poor 10-year DFS and OS. These biological findings, including a significant association between DFS and OS, and the expressions of MAP3K1, phospho-ERK, and phospho-JNK were further validated in an independent cohort. Multivariate analysis identified MAP3K1 expression as an independent poor prognostic factor for DFS and OS. CONCLUSION: Our results indicate that the overexpression of MAP3K1 plays a major role in the poor prognosis of HR-positive, HER2-negative early stage breast cancer.


Subject(s)
Breast Neoplasms , MAP Kinase Kinase Kinase 1 , Humans , Animals , Mice , Female , Breast Neoplasms/pathology , NF-kappa B , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Tamoxifen , Disease-Free Survival , p38 Mitogen-Activated Protein Kinases , MAP Kinase Kinase Kinase 1/genetics
5.
Adv Sci (Weinh) ; 10(16): e2207047, 2023 06.
Article in English | MEDLINE | ID: mdl-37060107

ABSTRACT

Supramolecular framework (SF) encourages the emergence of porous structures with molecular flexibility while the dimension and morphology controls are less involved even though critical factors are vital for various utilizations. Targeting this purpose, two isolated components are designed and their stepped combinations via ionic interaction, metal coordination, and hydrogen bond into framework assembly with two morphologic states are realized. The zinc coordination to an ionic complex of polyoxometalate with three cationic terpyridine ligands constructs 2D hexagonal SF structure. A further growth along perpendicular direction driven by hydrogen bonding between grafted mannose groups leads to 3D SF assemblies, providing a modulation superiority in one framework for multiple utilizations. The large area of multilayered SF sheet affords a filtration membrane for strict separation of nanoparticles/proteins under gently reduced pressures while the granular SF assembly demonstrates an efficient carrier to load and fix horse radish peroxidase with maintained activity for enzymatic catalysis.


Subject(s)
Metals , Zinc , Metals/chemistry , Zinc/chemistry
6.
Nat Commun ; 14(1): 975, 2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36810849

ABSTRACT

Synthetic framework materials have been cherished as appealing candidates for separation membranes in daily life and industry, while the challenges still remain in precise control of aperture distribution and separation threshold, mild processing methods, and extensive application aspects. Here, we show a two-dimensional (2D) processible supramolecular framework (SF) by integrating directional organic host-guest motifs and inorganic functional polyanionic clusters. The thickness and flexibility of the obtained 2D SFs are tuned by the solvent modulation to the interlayer interactions, and the optimized SFs with limited layers but micron-sized areas are used to fabricate the sustainable membranes. The uniform nanopores allow the membrane composed of layered SF to exhibit strict size retention for substrates with the rejection value of 3.8 nm, and the separation accuracy within 5 kDa for proteins. Furthermore, the membrane performs high charge selectivity for charged organics, nanoparticles, and proteins, due to the insertion of polyanionic clusters in the framework skeletons. This work displays the extensional separation potentials of self-assembled framework membranes comprising of small-molecules and provides a platform for the preparation of multifunctional framework materials due to the conveniently ionic exchange of the counterions of the polyanionic clusters.

7.
Nano Lett ; 23(1): 42-50, 2023 01 11.
Article in English | MEDLINE | ID: mdl-36562792

ABSTRACT

Dendrite growth and side reactions of Zn metal anodes remain unresolved obstacles for practical application of aqueous Zn ion batteries. Herein, a two-dimensional (2D) organic-inorganic heterostructure with controlled thickness was constructed as a protective layer for a Zn metal anode. The reduction of uniformly distributed polyoxometalate in the layer causes a negative charge density gradient, which can accelerate zinc ion transfer, homogenize zinc deposition, and shield sulfates at the electrode interface, while the exposed hydrophobic alkyl chain of the layer can isolate the direct contact of water with the Zn anode. As a result of the synergetic effect, this 2D organic-inorganic heterostructure enables high Zn plating/stripping reversibility, with high average Coulombic efficiencies of 99.97% for 3700 cycles at 2 mA cm-2. Under high Zn utilization conditions, a high areal-capacity full cell with hundreds of cycles was demonstrated.


Subject(s)
Metals , Zinc , Electric Power Supplies , Electrodes , Water
8.
Oxid Med Cell Longev ; 2022: 7957255, 2022.
Article in English | MEDLINE | ID: mdl-36092168

ABSTRACT

Abdominal or pelvic radiotherapy (RT) often results in small intestinal injury, such as apoptosis of epithelial cells and shortening of the villi. Atorvastatin, a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, has many biological effects including cholesterol reduction, protection from cell damage, and autophagy activation. To reduce the extent of radiotherapy- (RT-) induced enteritis, we investigated the protective effects of atorvastatin against RT-induced damage of the intestinal tract. In this study, C57BL/6 mice were randomly distributed into the following groups (n = 8 per group): (1) control group: mice were fed water only, (2) atorvastatin group (Ator): mice were administered atorvastatin, (3) irradiation group (IR): mice received abdominal RT, (4) Ator+IR group: mice received abdominal RT following atorvastatin administration, and (5) Ator+IR+3-MA group: abdominal RT following atorvastatin and 3-methyladenine (an autophagy inhibitor) administration. Based on the assessment of modified Chiu's injury score and villus/crypt ratio, we found that atorvastatin administration significantly reduced intestinal mucosal damage induced by RT. Atorvastatin treatment reduced apoptosis (cleaved caspase-3 and cleaved poly (ADP-ribose) polymerase), DNA damage (γH2AX and 53BP1), oxidative stress (OS, 4-hydroxynonenal), inflammatory molecules (phospho-NF-κB p65 and TGF-ß), fibrosis (collagen I and collagen III), barrier leakage (claudin-2 and fluorescein isothiocyanate-dextran), disintegrity (fatty acid-binding protein 2), and dysfunction (lipopolysaccharide) caused by RT in small intestinal tissue. In addition, atorvastatin upregulated the expression of autophagy-active molecules (LC3B), antioxidants (heme oxygenase 1 and thioredoxin 1), and tight junction proteins (occludin and zonula occludens 1). However, the biological functions of atorvastatin in decreasing RT-induced enteritis were reversed after the administration of 3-MA; the function of antioxidant molecules and activity of thioredoxin reductase were independent of autophagy activation. Our results indicate that atorvastatin can effectively relieve RT-induced enteritis through autophagy activation and associated biological functions, including maintaining integrity and function and decreasing apoptosis, DNA damage, inflammation, OS, and fibrosis. It also acts via its antioxidative capabilities.


Subject(s)
Antioxidants , Autophagy , Animals , Antioxidants/pharmacology , Atorvastatin/pharmacology , Atorvastatin/therapeutic use , Fibrosis , Mice , Mice, Inbred C57BL
9.
ACS Appl Mater Interfaces ; 14(4): 5194-5202, 2022 Feb 02.
Article in English | MEDLINE | ID: mdl-35067040

ABSTRACT

Enhanced conversion of carbon dioxide (CO2) for cycloaddition with epoxide derivatives is highly desired in organic synthesis and green chemistry, yet it is still a challenge to obtain satisfactory activity under mild reaction conditions of temperature and pressure. For this purpose, an unexploited strategy is proposed here by incorporating near-infrared (NIR) photothermal properties into multicomponent catalysts. Through the electrostatic adsorption of Co- or Ce-substituted polyoxometalate (POM) clusters on the surface of graphene oxide (GO) with covalently grafted polyethyleneimine (PEI), a series of composite catalysts POMs@GO-PEI are prepared. The structural and property characterizations demonstrate the synergistic advantages of the catalysts bearing Lewis acids and bases and local NIR photothermal heating from the GO matrix for dramatically enhanced CO2 cycloaddition. Noticeably, while the turnover frequency increases up to 2718 h-1, the heterogeneous catalysts exhibit photothermal stability and recyclability. With this method, the onsite NIR photothermal transformation becomes extendable to more green reaction processes.

10.
Cancer Cell Int ; 21(1): 436, 2021 Aug 19.
Article in English | MEDLINE | ID: mdl-34412631

ABSTRACT

BACKGROUND: We previously demonstrated that nuclear BCL10 translocation participates in the instigation of NF-κB in breast cancer and lymphoma cell lines. In this study, we assessed whether nuclear BCL10 translocation is clinically significant in advanced and metastatic pancreatic ductal adenocarcinoma (PDAC). METHOD AND MATERIALS: We analyzed the expression of BCL10-, cell cycle-, and NF-κB- related signaling molecules, and the DNA-binding activity of NF-κB in three PDAC cell lines (mutant KRAS lines: PANC-1 and AsPC-1; wild-type KRAS line: BxPC-3) using BCL10 short hairpin RNA (shBCL10). To assess the anti-tumor effect of BCL10 knockdown in PDAC xenograft model, PANC-1 cells treated with or without shBCL10 transfection were inoculated into the flanks of mice. We assessed the expression patterns of BCL10 and NF-κB in tumor cells in 136 patients with recurrent, advanced, and metastatic PDAC using immunohistochemical staining. RESULTS: We revealed that shBCL10 transfection caused cytoplasmic translocation of BCL10 from the nuclei, inhibited cell viability, and enhanced the cytotoxicities of gemcitabine and oxaliplatin in three PDAC cell lines. Inhibition of BCL10 differentially blocked cell cycle progression in PDAC cell lines. Arrest at G1 phase was noted in wild-type KRAS cell lines; and arrest at G2/M phase was noted in mutant KRAS cell lines. Furthermore, shBCL10 transfection downregulated the expression of phospho-CDC2, phospho-CDC25C, Cyclin B1 (PANC-1), Cyclins A, D1, and E, CDK2, and CDK4 (BxPC-3), p-IκBα, nuclear expression of BCL10, BCL3, and NF-κB (p65), and attenuated the NF-κB pathway activation and its downstream molecule, c-Myc, while inhibition of BCL10 upregulated expression of p21, and p27 in both PANC-1 and BxPC-3 cells. In a PANC-1-xenograft mouse model, inhibition of BCL10 expression also attenuated the tumor growth of PDAC. In clinical samples, nuclear BCL10 expression was closely associated with nuclear NF-κB expression (p < 0.001), and patients with nuclear BCL10 expression had the worse median overall survival than those without nuclear BCL10 expression (6.90 months versus 9.53 months, p = 0.019). CONCLUSION: Nuclear BCL10 translocation activates NF-κB signaling and contributes to tumor progression and poor prognosis of advanced/metastatic PDAC.

11.
Dalton Trans ; 50(15): 5080-5098, 2021 Apr 21.
Article in English | MEDLINE | ID: mdl-33734264

ABSTRACT

Polyoxometalates (POMs), as a typical class of discrete metal oxide clusters that are known in inorganic and structural chemistry since long, have displayed more and more interesting applications over recent years. However, in comparison to the chemical synthesis, the photochemical, electrochemical, and magnetic properties, the structural asymmetry, and relative characteristic investigations arising therefrom are far behind even if they are very important for functional materials, especially in solution systems. One of the main reasons is that it is hard to control and maintain a stable chiral state of POMs to carry out further corresponding performances. Aiming to overcome these disadvantages, the main concerns of this review are to discuss the generation of the chirality for discrete metal oxide clusters, chirality transfer via a supramolecular approach, chirality amplification in self-assemblies, and the related functional properties such as photochromism, catalysis, and bioactivities in solutions. Considering that some previous reviews dealt with chiral structures and packing architectures in the crystalline solids of POMs, this article only concentrates on the induced chirality and material properties in solution systems, which have been more active recently but no review article has been involved in this interesting area.

12.
J Econ Entomol ; 113(5): 2343-2353, 2020 10 16.
Article in English | MEDLINE | ID: mdl-32785577

ABSTRACT

The psyllid Cacopsylla chinensis (Yang & Li) (Hemiptera: Psyllidae) is a serious pest of pears in China. To determine and contrast the fitness of the psyllid on two endemic cultivars of Pyrus bretschneideri (i.e., BHXS and BSL) and two introduced cultivars of Pyrus communis (i.e., CB and CRB), we analyzed data on the development, survival, and fecundity from C. chinensis individuals reared on the four cultivars. The age-stage, two-sex life table theory was used in order to enable the inclusion of males in the analysis as well as a means of identifying the variation in developmental durations among individuals. Results indicated that C. chinensis can successfully develop and reproduce on all four pear cultivars. However, based on the lower preadult survival rate, longer preadult duration, longer total preoviposition period (TPOP), and lower fecundity that occurred on both cultivars of P. communis, these two cultivars are less favorable hosts for C. chinensis than the P. bretschneideri cultivars. The lower intrinsic rate of increase (r), finite rate of increase (λ), and net reproduction rate (R0) on CB and CRB pears showed these two introduced cultivars are more resistant to C. chinensis than the endemic BHXS and BSL pears. These resistant cultivars would be appropriate candidates for managing C. chinensis. We used the bootstrap technique to estimate the uncertainty of the population parameters (r, λ, R0, etc.), while also demonstrating that it can be used for estimating the 0.025 and 0.975 percentile confidence intervals of the age of survival rate.


Subject(s)
Hemiptera , Pyrus , Rosaceae , Rosales , Animals , China , Confidence Intervals , Life Tables
13.
Cancers (Basel) ; 11(8)2019 Aug 19.
Article in English | MEDLINE | ID: mdl-31430901

ABSTRACT

Our previous study demonstrated that administration of NVP-BEZ235 (BEZ235), a dual PI3K/mTOR inhibitor, before radiotherapy (RT) enhanced the radiotherapeutic effect in colorectal cancer (CRC) cells both in vitro and in vivo. Here, we evaluated whether maintenance BEZ235 treatment, after combinatorial BEZ235 + RT therapy, prolonged the antitumor effect in CRC. K-RAS mutant CRC cells (HCT116 and SW480), wild-type CRC cells (HT29), and HCT116 xenograft tumors were separated into the following six study groups: (1) untreated (control); (2) RT alone; (3) BEZ235 alone; (4) RT + BEZ235; (5) maintenance BEZ235 following RT + BEZ235 (RT + BEZ235 + mBEZ235); and (6) maintenance BEZ235 following BEZ235 (BEZ235 + mBEZ235). RT + BEZ235 + mBEZ235 treatment significantly inhibited cell viability and increased apoptosis in three CRC cell lines compared to the other five treatments in vitro. In the HCT116 xenograft tumor model, RT + BEZ235 + mBEZ235 treatment significantly reduced the tumor size when compared to the other five treatments. Furthermore, the expression of mTOR signaling molecules (p-rpS6 and p-eIF4E), DNA double-strand break (DSB) repair-related molecules (p-ATM and p-DNA-PKcs), and angiogenesis-related molecules (VEGF-A and HIF-1α) was significantly downregulated after RT + BEZ235 + mBEZ235 treatment both in vitro and in vivo when compared to the RT + BEZ235, RT, BEZ235, BEZ235 + mBEZ235, and control treatments. Cleaved caspase-3, cleaved poly (ADP-ribose) polymerase (PARP), 53BP1, and γ-H2AX expression in the HCT116 xenograft tissue and three CRC cell lines were significantly upregulated after RT + BEZ235 + mBEZ235 treatment. Maintenance BEZ235 treatment in CRC cells prolonged the inhibition of cell viability, enhancement of apoptosis, attenuation of mTOR signaling, impairment of the DNA-DSB repair mechanism, and downregulation of angiogenesis that occurred due to concurrent BEZ235 and RT treatment.

15.
Biomaterials ; 151: 38-52, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29059540

ABSTRACT

BACKGROUND: Carboplatin, an antineoplastic agent, binds DNA and enhances radiotherapy (RT) effects. Carboplatin-loaded hydrogel (oxidized hyaluronic acid/adipic acid dihydrazide) enables the sustained drug release and facilitates the synergistic effect with RT. PURPOSE: We investigated the effectiveness and convenience of hydrogel carboplatin combined with RT for mice glioma. MATERIALS AND METHODS: Mouse glioma cells (ALTS1C1) were subcutaneously implanted in the right thigh of C57BL/6 mice on Day 0. The mice were categorized by treatments: sham, hydrogel, hydrogel carboplatin, aqueous carboplatin, RT, hydrogel carboplatin/RT, and aqueous carboplatin/RT. Hydrogel carboplatin (300 µg single dose on Day 7) or aqueous carboplatin (100 µg daily dose on Days 7, 8, and 9) was administered via intratumoral injection. RT was delivered a daily dose of 10 Gy on Days 8 and 9. RESULTS: For mice administered hydrogel carboplatin/RT versus those administered aqueous carboplatin/RT, the 24-day tumor growth control rate and 104-day recurrence-free survival rate were 100% and 50% versus 100% and 66.7% (p = 0.648), respectively. However, mice receiving other treatments showed tumor progression by Day 24 and died within 40 days of tumor cell implantation. CONCLUSIONS: Hydrogel carboplatin simplified intratumoral drug delivery and remained the synergistic effects with RT, which is potential for clinical applications.


Subject(s)
Antineoplastic Agents/pharmacology , Brain Neoplasms/drug therapy , Brain Neoplasms/radiotherapy , Carboplatin/pharmacology , Glioma/drug therapy , Glioma/radiotherapy , Hydrogels/chemistry , 3T3 Cells , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/adverse effects , Antineoplastic Agents/chemistry , Carboplatin/administration & dosage , Carboplatin/adverse effects , Carboplatin/chemistry , Cell Line, Tumor , Cell Survival , Combined Modality Therapy , Delayed-Action Preparations , Drug Carriers/chemistry , Drug Liberation , Humans , Injections, Intralesional , Materials Testing/methods , Mice , Mice, Inbred C57BL , Tissue Distribution
16.
Sci Rep ; 7(1): 14333, 2017 10 30.
Article in English | MEDLINE | ID: mdl-29084984

ABSTRACT

First-line antibiotic treatment for eradicating Helicobacter pylori (HP) infection is effective in HP-positive low-grade gastric mucosa-associated lymphoid tissue lymphoma (MALToma), but its role in HP-negative cases is uncertain. In this exploratory retrospective study, we assessed the outcome and potential predictive biomarkers for 25 patients with HP-negative localized gastric MALToma who received first-line HP eradication (HPE) therapy. An HP-negative status was defined as negative results on histology, rapid urease test, 13C urea breath test, and serology. We observed an antibiotic response (complete remission [CR], number = 8; partial remission, number = 1) in 9 (36.0%) out of 25 patients. A t(11;18)(q21;q21) translocation was detected in 7 (43.8%) of 16 antibiotic-unresponsive cases, but in none of the 9 antibiotic-responsive cases (P = 0.027). Nuclear BCL10 expression was significantly higher in antibiotic-unresponsive tumors than in antibiotic-responsive tumors (14/16 [87.5%] vs. 1/9 [11.1%]; P = 0.001). Nuclear NF-κB expression was also significantly higher in antibiotic-unresponsive tumors than in antibiotic-responsive tumors (12/16 [75.0%] vs. 1/9 [11.1%]; P = 0.004). A substantial portion of patients with HP-negative gastric MALToma responded to first-line HPE. In addition to t(11;18)(q21;q21), BCL10 and NF-κB are useful immunohistochemical biomarkers to predict antibiotic-unresponsive status in this group of tumors.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Antineoplastic Agents/therapeutic use , Gastric Mucosa/pathology , Helicobacter pylori/physiology , Lymphoid Tissue/pathology , Lymphoma/drug therapy , Stomach Neoplasms/drug therapy , Adult , Aged , Aged, 80 and over , B-Cell CLL-Lymphoma 10 Protein/genetics , B-Cell CLL-Lymphoma 10 Protein/metabolism , Drug Resistance, Neoplasm/genetics , Female , Gene Expression Regulation, Neoplastic , Humans , Male , Middle Aged , NF-kappa B/genetics , NF-kappa B/metabolism , Treatment Outcome , Young Adult
18.
J Pathol ; 241(3): 420-433, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27873317

ABSTRACT

We previously reported that activation of the B-cell-activating factor (BAFF) pathway upregulates nuclear factor-κB (NF-κB) and induces BCL3 and BCL10 nuclear translocation in Helicobacter pylori (HP)-independent gastric diffuse large B-cell lymphoma (DLBCL) tumours with evidence of mucosa-associated lymphoid tissue (MALT). However, the significance of BAFF expression in HP independence of gastric low-grade MALT lymphomas without t(11;18)(q21;q21) remains unexplored. Sixty-four patients who underwent successful HP eradication for localized HP-positive gastric MALT lymphomas without t(11;18)(q21;q21) were studied. BAFF expression was significantly higher in the HP-independent group than in the HP-dependent group [22/26 (84.6%) versus 8/38 (21.1%); p < 0.001]. Similarly, BAFF receptor (BAFF-R) expression (p = 0.004) and nuclear BCL3 (p = 0.004), BCL10 (p < 0.001), NF-κB (p65) (p = 0.001) and NF-κB (p52) (p = 0.005) expression were closely correlated with the HP independence of these tumours. Moreover, BAFF overexpression was significantly associated with BAFF-R expression and nuclear BCL3, BCL10, NF-κB (p65) and NF-κB (p52) expression. These findings were further validated in an independent cohort, including 40 HP-dependent cases and 18 HP-independent cases of gastric MALT lymphoma without t(11;18)(q21;q21). The biological significance of BAFF signalling in t(11;18)(q21;q21)-negative lymphoma cells was further studied in two types of lymphoma B cell: OCI-Ly3 [non-germinal centre B-cell origin DLBCL without t(11;18)(q21;q21) cell line] and MA-1 [t(14;18)(q32;q21)/IGH-MALT1-positive DLBCL cell line]. In both cell lines, we found that BAFF activated the canonical NF-κB and AKT pathways, and induced the formation of BCL10-BCL3 complexes, which translocated to the nucleus. BCL10 and BCL3 nuclear translocation and NF-κB (p65) transactivation were inhibited by either LY294002 or by silencing BCL3 or BCL10 with small interfering RNA. BAFF also activated non-canonical NF-κB pathways (p52) through tumour necrosis factor receptor-associated factor 3 degradation, NF-κB-inducing kinase accumulation, inhibitor of κB kinase (IKK) α/ß phosphorylation and NF-κB p100 processing in both cell lines. Our data indicate that the autocrine BAFF signal transduction pathway contributes to HP independence in gastric MALT lymphomas without the t(11;18)(q21;q21) translocation. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
B-Lymphocytes/metabolism , Lymphoma, B-Cell, Marginal Zone/genetics , Protein Serine-Threonine Kinases/genetics , Signal Transduction/genetics , Translocation, Genetic/genetics , Adult , Aged , Aged, 80 and over , Female , Helicobacter pylori , Humans , Male , Middle Aged , NF-kappa B/metabolism , Protein Serine-Threonine Kinases/metabolism , NF-kappaB-Inducing Kinase
19.
ACS Appl Mater Interfaces ; 8(28): 17793-804, 2016 Jul 20.
Article in English | MEDLINE | ID: mdl-27348241

ABSTRACT

Cancer stem-like cells play a key role in tumor development, and these cells are relevant to the failure of conventional chemotherapy. To achieve favorable therapy for colorectal cancer, PEG-PCL-based nanoparticles, which possess good biological compatibility, were fabricated as nanocarriers for the topoisomerase inhibitor, SN-38. For cancer stem cell therapy, CD133 (prominin-1) is a theoretical cancer stem-like cell (CSLC) marker for colorectal cancer and is a proposed therapeutic target. Cells with CD133 overexpression have demonstrated enhanced tumor-initiating ability and tumor relapse probability. To resolve the problem of chemotherapy failure, SN-38-loaded nanoparticles were conjugated with anti-CD133 antibody to target CD133-positive (CD133(+)) cells. In this study, anti-CD133 antibody-conjugated SN-38-loaded nanoparticles (CD133Ab-NPs-SN-38) efficiently bound to HCT116 cells, which overexpress CD133 glycoprotein. The cytotoxic effect of CD133Ab-NPs-SN-38 was greater than that of nontargeted nanoparticles (NPs-SN-38) in HCT116 cells. Furthermore, CD133Ab-NPs-SN-38 could target CD133(+) cells and inhibit colony formation compared with NPs-SN-38. In vivo studies in an HCT116 xenograft model revealed that CD133Ab-NPs-SN-38 suppressed tumor growth and retarded recurrence. A reduction in CD133 expression in HCT116 cells treated with CD133Ab-NPs-SN-38 was also observed in immunohistochemistry results. Therefore, this CD133-targeting nanoparticle delivery system could eliminate CD133-positive cells and is a potential cancer stem cell targeted therapy.


Subject(s)
AC133 Antigen/immunology , Antineoplastic Agents, Phytogenic/administration & dosage , Camptothecin/analogs & derivatives , Colorectal Neoplasms/drug therapy , Immunotoxins/administration & dosage , Nanoparticles/administration & dosage , Neoplastic Stem Cells/drug effects , AC133 Antigen/biosynthesis , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Antineoplastic Agents, Phytogenic/chemistry , Camptothecin/administration & dosage , Camptothecin/chemistry , Colorectal Neoplasms/immunology , Colorectal Neoplasms/pathology , Female , HCT116 Cells , HT29 Cells , Humans , Immunotoxins/chemistry , Immunotoxins/immunology , Irinotecan , Mice , Mice, Nude , Molecular Targeted Therapy , Nanoparticles/chemistry , Nanoparticles/metabolism , Neoplastic Stem Cells/immunology , Neoplastic Stem Cells/pathology , Random Allocation , Xenograft Model Antitumor Assays
20.
Biomaterials ; 86: 92-105, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26896610

ABSTRACT

The development of an efficient colorectal cancer therapy is currently a public health priority. In the present work, we proposed a multifunctional theranostic micellar drug delivery system utilizing cationic PDMA-block-poly(ε-caprolactone) (PDMA-b-PCL) micelles as nanocarriers of SN-38 (7-ethyl-10-hydroxycamptothecin), ultra-small superparamagnetic iron oxide nanoparticles (USPIO), and small interfering RNA (siRNA) that targets human vascular endothelial growth factor (VEGF). The VEGF siRNA was conjugated to polyethylene glycol (PEG) (siRNA-PEG) before complexation with the micelles in order to improve the siRNA's stability and to prolong its retention time in the blood circulation. To further improve the in vivo biosafety, we prepared mixed micelles using mPEG-PCL together with PDMA-b-PCL copolymer. The SN-38/USPIO-loaded siRNA-PEG mixed micelleplexes passively targeted to tumor regions and synergistically facilitated VEGF silencing and chemotherapy, thus efficiently suppressing tumor growth via a multi-dose therapy regimen. Additionally, the SN-38/USPIO-loaded siRNA-PEG mixed micelleplexes acted as a negative magnetic resonance imaging (MRI) contrast agent in T2-weighted imaging, resulting in a powerful tool for the diagnosis and for tracking of the therapeutic outcomes. In summary, we established a theranostic micellar drug and gene delivery system that not only synergistically combined gene silencing and chemotherapy but also served as a negative MRI contrast agent, which reveal its potential as a novel colorectal cancer therapy.


Subject(s)
Antineoplastic Agents, Phytogenic/therapeutic use , Camptothecin/analogs & derivatives , Colorectal Neoplasms/therapy , Drug Carriers/chemistry , RNA, Small Interfering/therapeutic use , Vascular Endothelial Growth Factor A/genetics , Animals , Antineoplastic Agents, Phytogenic/administration & dosage , Camptothecin/administration & dosage , Camptothecin/therapeutic use , Cell Line, Tumor , Colon/drug effects , Colon/metabolism , Colon/pathology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Dextrans/chemistry , Drug Delivery Systems/methods , Female , Humans , Irinotecan , Magnetite Nanoparticles/chemistry , Methacrylates/chemistry , Mice, Inbred BALB C , Mice, Nude , Micelles , Polyesters/chemistry , Polyethylene Glycols/chemistry , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/genetics , RNAi Therapeutics/methods , Rectum/drug effects , Rectum/metabolism , Rectum/pathology , Theranostic Nanomedicine
SELECTION OF CITATIONS
SEARCH DETAIL
...