Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Biology (Basel) ; 13(4)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38666888

ABSTRACT

Mucor circinelloides WJ11 is a lipid-producing strain with industrial potential. A holistic approach using gene manipulation and bioprocessing development has improved lipid production and the strain's economic viability. However, the systematic regulation of lipid accumulation and carotenoid biosynthesis in M. circinelloides remains unknown. To dissect the metabolic mechanism underlying lipid and carotenoid biosynthesis, transcriptome analysis and reporter metabolites identification were implemented between the wild-type (WJ11) and ΔcarRP WJ11 strains of M. circinelloides. As a result, transcriptome analysis revealed 10,287 expressed genes, with 657 differentially expressed genes (DEGs) primarily involved in amino acid, carbohydrate, and energy metabolism. Integration with a genome-scale metabolic model (GSMM) identified reporter metabolites in the ΔcarRP WJ11 strain, highlighting metabolic pathways crucial for amino acid, energy, and nitrogen metabolism. Notably, the downregulation of genes associated with carotenoid biosynthesis and acetyl-CoA generation suggests a coordinated relationship between the carotenoid and fatty acid biosynthesis pathways. Despite disruptions in the carotenoid pathway, lipid production remains stagnant due to reduced acetyl-CoA availability, emphasizing the intricate metabolic interplay. These findings provide insights into the coordinated relationship between carotenoid and fatty acid biosynthesis in M. circinelloides that are valuable in applied research to design optimized strains for producing desired bioproducts through emerging technology.

2.
Plant J ; 118(4): 1119-1135, 2024 May.
Article in English | MEDLINE | ID: mdl-38308390

ABSTRACT

Salicylic acid (SA) is known to enhance salt tolerance in plants. However, the mechanism of SA-mediated response to high salinity in halophyte remains unclear. Using electrophysiological and molecular biological methods, we investigated the role of SA in response to high salinity in mangrove species, Kandelia obovata, a typical halophyte. Exposure of K. obovata roots to high salinity resulted in a rapid increase in endogenous SA produced by phenylalanine ammonia lyase pathway. The application of exogenous SA improved the salt tolerance of K. obovata, which depended on the NADPH oxidase-mediated H2O2. Exogenous SA and H2O2 increased Na+ efflux and reduced K+ loss by regulating the transcription levels of Na+ and K+ transport-related genes, thus reducing the Na+/K+ ratio in the salt-treated K. obovata roots. In addition, exogenous SA-enhanced antioxidant enzyme activity and its transcripts, and the expressions of four genes related to AsA-GSH cycle as well, then alleviated oxidative damages in the salt-treated K. obovata roots. However, the above effects of SA could be reversed by diphenyleneiodonium chloride (the NADPH oxidase inhibitor) and paclobutrazol (a SA biosynthesis inhibitor). Collectively, our results demonstrated that SA-induced salt tolerance of K. obovata depends on NADPH oxidase-generated H2O2 that affects Na+/K+ and redox homeostasis in response to high salinity.


Subject(s)
Homeostasis , Hydrogen Peroxide , NADPH Oxidases , Oxidation-Reduction , Plant Roots , Potassium , Salicylic Acid , Salt Tolerance , Sodium , Hydrogen Peroxide/metabolism , NADPH Oxidases/metabolism , NADPH Oxidases/genetics , Salicylic Acid/metabolism , Salicylic Acid/pharmacology , Potassium/metabolism , Salt Tolerance/genetics , Sodium/metabolism , Plant Roots/genetics , Plant Roots/physiology , Plant Roots/metabolism , Salt-Tolerant Plants/genetics , Salt-Tolerant Plants/metabolism , Salt-Tolerant Plants/physiology , Gene Expression Regulation, Plant , Rhizophoraceae/physiology , Rhizophoraceae/genetics , Rhizophoraceae/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism
3.
Plant Cell Environ ; 47(3): 832-853, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37984066

ABSTRACT

Aquaporins (AQPs) regulate the transport of water and other substrates, aiding plants in adapting to stressful environments. However, the knowledge of AQPs in salt-secreting and viviparous Avicennia marina is limited. In this study, 46 AmAQPs were identified in A. marina genome, and their subcellular localisation and function in transporting H2 O2 and boron were assessed through bioinformatics analysis and yeast transformation. Through analysing their expression patterns via RNAseq and real-time quantitative polymerase chain reaction, we found that most AmAQPs were downregulated in response to salt and tidal flooding. AmPIP (1;1, 1;7, 2;8, 2;9) and AmTIP (1;5, 1;6) as salt-tolerant candidate genes may contribute to salt secretion together with Na+ /H+ antiporters. AmPIP2;1 and AmTIP1;5 were upregulated during tidal flooding and may be regulated by anaerobic-responsive element and ethylene-responsive element cis-elements, aiding in adaptation to tidal inundation. Additionally, we found that the loss of the seed desiccation and dormancy-related TIP3 gene, and the loss of the seed dormancy regulator DOG1 gene, or DOG1 protein lack heme-binding capacity, may be genetic factors contributing to vivipary. Our findings shed light on the role of AQPs in A. marina adaptation to intertidal environments and their relevance to salt secretion and vivipary.


Subject(s)
Aquaporins , Avicennia , Avicennia/metabolism , Ecosystem , Water/metabolism , Aquaporins/genetics , Aquaporins/metabolism
4.
Tree Physiol ; 44(1)2024 02 06.
Article in English | MEDLINE | ID: mdl-37769324

ABSTRACT

Salt secretion is an important strategy used by the mangrove plant Aegiceras corniculatum to adapt to the coastal intertidal environment. However, the structural, developmental and functional analyses on the leaf salt glands, particularly the salt secretion mechanism, are not well documented. In this study, we investigated the structural, developmental and degenerative characteristics and the salt secretion mechanisms of salt glands to further elucidate the mechanisms of salt tolerance of A. corniculatum. The results showed that the salt gland cells have a large number of mitochondria and vesicles, and plenty of plasmodesmata as well, while chloroplasts were found in the collecting cells. The salt glands developed early and began to differentiate at the leaf primordium stage. We observed and defined three stages of salt gland degradation for the first time in A. corniculatum, where the secretory cells gradually twisted and wrinkled inward and collapsed downward as the salt gland degeneration increased and the intensity of salt gland autofluorescence gradually diminished. In addition, we found that the salt secretion rate of the salt glands increased when the treated concentration of NaCl increased, reaching the maximum at 400 mM NaCl. The salt-secreting capacity of the salt glands of the adaxial epidermis is significantly greater than that of the abaxial epidermis. The real-time quantitative PCR results indicate that SAD2, TTG1, GL2 and RBR1 may be involved in regulating the development of the salt glands of A. corniculatum. Moreover, Na+/H+ antiporter, H+-ATPase, K+ channel and Cl- channel may play important roles in the salt secretion of salt glands. In sum mary, this study strengthens the understanding of the structural, developmental and degenerative patterns of salt glands and salt secretion mechanisms in mangrove recretohalophyte A. corniculatum, providing an important reference for further studies at the molecular level.


Subject(s)
Primulaceae , Salt Gland , Environment , Plant Leaves/metabolism , Primulaceae/physiology , Sodium Chloride/metabolism
5.
Adv Mater ; : e2308802, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37878366

ABSTRACT

Single-crystal graphene (SCG) wafers are needed to enable mass-electronics and optoelectronics owing to their excellent properties and compatibility with silicon-based technology. Controlled synthesis of high-quality SCG wafers can be done exploiting single-crystal Cu(111) substrates as epitaxial growth substrates recently. However, current Cu(111) films prepared by magnetron sputtering on single-crystal sapphire wafers still suffer from in-plane twin boundaries, which degrade the SCG chemical vapor deposition. Here, it is shown how to eliminate twin boundaries on Cu and achieve 4 in. Cu(111) wafers with ≈95% crystallinity. The introduction of a temperature gradient on Cu films with designed texture during annealing drives abnormal grain growth across the whole Cu wafer. In-plane twin boundaries are eliminated via migration of out-of-plane grain boundaries. SCG wafers grown on the resulting single-crystal Cu(111) substrates exhibit improved crystallinity with >97% aligned graphene domains. As-synthesized SCG wafers exhibit an average carrier mobility up to 7284 cm2 V-1 s-1 at room temperature from 103 devices and a uniform sheet resistance with only 5% deviation in 4 in. region.

6.
Bioinformatics ; 39(9)2023 09 02.
Article in English | MEDLINE | ID: mdl-37647638

ABSTRACT

SUMMARY: The next-generation sequencing brought opportunities for the diagnosis of genetic disorders due to its high-throughput capabilities. However, the majority of existing methods were limited to only sequencing candidate variants, and the process of linking these variants to a diagnosis of genetic disorders still required medical professionals to consult databases. Therefore, we introduce diseaseGPS, an integrated platform for the diagnosis of genetic disorders that combines both phenotype and genotype data for analysis. It offers not only a user-friendly GUI web application for those without a programming background but also scripts that can be executed in batch mode for bioinformatics professionals. The genetic and phenotypic data are integrated using the ACMG-Bayes method and a novel phenotypic similarity method, to prioritize the results of genetic disorders. diseaseGPS was evaluated on 6085 cases from Deciphering Developmental Disorders project and 187 cases from Shanghai Children's hospital. The results demonstrated that diseaseGPS performed better than other commonly used methods. AVAILABILITY AND IMPLEMENTATION: diseaseGPS is available to freely accessed at https://diseasegps.sjtu.edu.cn with source code at https://github.com/BioHuangDY/diseaseGPS.


Subject(s)
Computational Biology , Child , Humans , Bayes Theorem , China , Genotype , Phenotype
7.
Sci Rep ; 13(1): 7614, 2023 05 10.
Article in English | MEDLINE | ID: mdl-37165000

ABSTRACT

Avicennia marina (Forsk.) Vierh. is a typical mangrove plant. Its epidermis contains salt glands, which can secrete excess salts onto the leaf surfaces, improving the salt tolerance of the plants. However, knowledge on the epidermis-specific transcriptional responses of A. marina to salinity treatment is lacking. Thus, physiological and transcriptomic techniques were applied to unravel the salt tolerance mechanism of A. marina. Our results showed that 400 mM NaCl significantly reduced the plant height, leaf area, leaf biomass and photosynthesis of A. marina. In addition, 1565 differentially expressed genes were identified, of which 634 and 931 were up- and down-regulated. Based on Kyoto Encyclopedia of Genes and Genomes metabolic pathway enrichment analysis, we demonstrated that decreased gene expression, especially that of OEE1, PQL2, FDX3, ATPC, GAPDH, PRK, FBP and RPE, could explain the inhibited photosynthesis caused by salt treatment. Furthermore, the ability of A. marina to cope with 400 mM NaCl treatment was dependent on appropriate hormone signalling and potential sulfur-containing metabolites, such as hydrogen sulfide and cysteine biosynthesis. Overall, the present study provides a theoretical basis for the adaption of A. marina to saline habitats and a reference for studying the salt tolerance mechanism of other mangrove plants.


Subject(s)
Avicennia , Animals , Avicennia/metabolism , Transcriptome , Salinity , Sodium Chloride/pharmacology , Sodium Chloride/metabolism , Gene Expression Profiling , Epidermis , Plant Leaves/genetics , RNA/metabolism
8.
Tree Physiol ; 43(5): 817-831, 2023 05 12.
Article in English | MEDLINE | ID: mdl-36611000

ABSTRACT

Avicennia marina, a mangrove plant growing in coastal wetland habitats, is frequently affected by tidal salinity. To understand its salinity tolerance, the seedlings of A. marina were treated with 0, 200, 400 and 600 mM NaCl. We found the whole-plant dry weight and photosynthetic parameters increased at 200 mM NaCl but decreased over 400 mM NaCl. The maximum quantum yield of primary photochemistry (Fv/Fm) significantly decreased at 600 mM NaCl. Transmission electron microscopy observations showed high salinity caused the reduction in starch grain size, swelling of the thylakoids and separation of the granal stacks, and even destruction of the envelope. In addition, the dense protoplasm and abundant mitochondria in the secretory and stalk cells, and abundant plasmodesmata between salt gland cells were observed in the salt glands of the adaxial epidermis. At all salinities, Na+ content was higher in leaves than in stems and roots; however, Na+ content increased in the roots while it remained at a constant level in the leaves over 400 mM NaCl treatment, due to salt secretion from the salt glands. As a result, salt crystals on the leaf adaxial surface increased with salinity. On the other hand, salt treatment increased Na+ and K+ efflux and decreased H+ efflux from the salt glands by the non-invasive micro-test technology, although Na+ efflux reached the maximum at 400 mM NaCl. Further real-time quantitative PCR analysis indicated that the expression of Na+/H+ antiporter (SOS1 and NHX1), H+-ATPase (AHA1 and VHA-c1) and K+ channel (AKT1, HAK5 and GORK) were up-regulated, and only the only Na+ inward transporter (HKT1) was down-regulated in the salt glands enriched adaxial epidermis of the leaves under 400 mM NaCl treatment. In conclusion, salinity below 200 mM NaCl was beneficial to the growth of A. marina, and below 400 mM, the salt glands could excrete Na+ effectively, thus improving its salt tolerance.


Subject(s)
Avicennia , Animals , Salt Tolerance , Salt Gland/metabolism , Sodium/metabolism , Sodium Chloride/pharmacology , Sodium Chloride/metabolism , Homeostasis , Plant Leaves/metabolism , Plant Roots/metabolism
9.
Plant Mol Biol ; 111(4-5): 393-413, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36645624

ABSTRACT

NAC (NAM, ATAF1/2, CUC2) transcription factors (TFs) constitute a plant-specific gene family. It is reported that NAC TFs play important roles in plant growth and developmental processes and in response to biotic/abiotic stresses. Nevertheless, little information is known about the functional and evolutionary characteristics of NAC TFs in mangrove plants, a group of species adapting coastal intertidal habitats. Thus, we conducted a comprehensive investigation for NAC TFs in Avicennia marina, one pioneer species of mangrove plants. We totally identified 142 NAC TFs from the genome of A. marina. Combined with NAC proteins having been functionally characterized in other organisms, we built a phylogenetic tree to infer the function of NAC TFs in A. marina. Gene structure and motif sequence analyses suggest the sequence conservation and transcription regulatory regions-mediated functional diversity. Whole-genome duplication serves as the driver force to the evolution of NAC gene family. Moreover, two pairs of NAC genes were identified as positively selected genes of which AmNAC010/040 may be imposed on less constraint toward neofunctionalization. Quite a few stress/hormone-related responsive elements were found in promoter regions indicating potential response to various external factors. Transcriptome data revealed some NAC TFs were involved in pneumatophore and leaf salt gland development and response to salt, flooding and Cd stresses. Gene co-expression analysis found a few NAC TFs participates in the special biological processes concerned with adaptation to intertidal environment. In summary, this study provides detailed functional and evolutionary information about NAC gene family in mangrove plant A. marina and new perspective for adaptation to intertidal habitats.


Subject(s)
Avicennia , Avicennia/chemistry , Avicennia/genetics , Avicennia/metabolism , Phylogeny , Transcription Factors/metabolism , Genes, Plant , Ecosystem
10.
Plant Cell Environ ; 46(5): 1521-1539, 2023 05.
Article in English | MEDLINE | ID: mdl-36658747

ABSTRACT

Hydrogen sulfide (H2 S) is considered to mediate plant growth and development. However, whether H2 S regulates the adaptation of mangrove plant to intertidal flooding habitats is not well understood. In this study, sodium hydrosulfide (NaHS) was used as an H2 S donor to investigate the effect of H2 S on the responses of mangrove plant Avicennia marina to waterlogging. The results showed that 24-h waterlogging increased reactive oxygen species (ROS) and cell death in roots. Excessive mitochondrial ROS accumulation is highly oxidative and leads to mitochondrial structural and functional damage. However, the application of NaHS counteracted the oxidative damage caused by waterlogging. The mitochondrial ROS production was reduced by H2 S through increasing the expressions of the alternative oxidase genes and increasing the proportion of alternative respiratory pathway in the total mitochondrial respiration. Secondly, H2 S enhanced the capacity of the antioxidant system. Meanwhile, H2 S induced Ca2+ influx and activated the expression of intracellular Ca2+ -sensing-related genes. In addition, the alleviating effect of H2 S on waterlogging can be reversed by Ca2+ chelator and Ca2+ channel blockers. In conclusion, this study provides the first evidence to explain the role of H2 S in waterlogging adaptation in mangrove plants from the mitochondrial aspect.


Subject(s)
Avicennia , Hydrogen Sulfide , Hydrogen Sulfide/pharmacology , Hydrogen Sulfide/metabolism , Calcium/metabolism , Avicennia/metabolism , Reactive Oxygen Species/metabolism , Oxidative Stress
11.
Front Nutr ; 10: 1321938, 2023.
Article in English | MEDLINE | ID: mdl-38249602

ABSTRACT

Introduction: Hu sheep, known for its high quality and productivity, lack fundamental scientific research in China. Methods: This study focused on the effects of 24 h postmortem aging on the meat physiological and transcriptomic alteration in Hu sheep. Results: The results showed that the 24 h aging process exerts a substantial influence on the mutton color, texture, and water content as compared to untreated group. Transcriptomic analysis identified 1,668 differentially expressed genes. Functional enrichment analysis highlighted the importance of glycolysis metabolism, protein processing in endoplasmic reticulum, and the FcγR-mediated phagocytosis pathway in mediating meat quality modification following postmortem aging. Furthermore, protein-protein interaction analysis uncovered complex regulatory networks involving glycolysis, the MAPK signaling pathway, protein metabolism, and the immune response. Discussion: Collectively, these findings offer valuable insights into the molecular mechanisms underlying meat quality changes during postmortem aging in Hu sheep, emphasizing the potential for improving quality control strategies in mutton production.

12.
Chemosphere ; 307(Pt 3): 136031, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35981624

ABSTRACT

Cadmium (Cd) is a toxic heavy metal affecting the normal growth of plants. Nitrate (NO3-) and ammonium (NH4+) are the primary forms of inorganic nitrogen (N) absorbed by plants. However, the mechanism of N absorption and regulation under Cd stress remains unclear. This study found that: (1) Cd treatment affected the biomass, root length, and Cd2+ flux in Solanum nigrum seedling roots. Specifically, 50 µM Cd significantly inhibited NO3- influx while increased NH4+ influx compared with 0 and 5 µM Cd treatments measured by non-invasive micro-test technology. (2) qRT-PCR analysis showed that 50 µM Cd inhibited the expressions of nitrate transporter genes, SnNRT2;4 and SnNRT2;4-like, increased the expressions of ammonium transporter genes, SnAMT1;2 and SnAMT1;3, in the roots. (3) Under NH4+ supply, 50 µM Cd significantly induced the expressions of the aquaporin genes, SnPIP1;5, SnPIP2;7, and SnTIP2;1. Our results showed that 50 µM Cd stress promoted NH4+ absorption by up-regulating the gene expressions of NH4+ transporter and aquaporins, suggesting that high Cd stress can affect the preference of N nutrition in S. nigrum.


Subject(s)
Ammonium Compounds , Aquaporins , Soil Pollutants , Solanum nigrum , Ammonium Compounds/metabolism , Aquaporins/genetics , Aquaporins/metabolism , Biodegradation, Environmental , Cadmium/analysis , Membrane Transport Proteins/metabolism , Nitrates/analysis , Nitrogen/analysis , Plant Roots/metabolism , Soil Pollutants/analysis , Solanum nigrum/metabolism
13.
Front Plant Sci ; 13: 845108, 2022.
Article in English | MEDLINE | ID: mdl-35463456

ABSTRACT

DNA methylation is a rapid response strategy promoting plant survival under heavy metal (HM) stress. However, the roles of DNA methylation underlying plant adaptation to HM stress remain largely unknown. Here, we used pokeweed, a hyperaccumulator of manganese (Mn) and cadmium (Cd), to explore responses of plant to HM stress at phenotypic, transcriptional and DNA methylation levels. Mn- and Cd-specific response patterns were detected in pokeweed. The growth of pokeweed was both inhibited with exposure to excess Mn/Cd, but pokeweed distinguished Mn and Cd with different subcellular distributions, ROS scavenging systems, transcriptional patterns including genes involved in DNA methylation, and differentially methylated loci (DML). The number of DML between Mn/Cd treated and untreated samples increased with increased Mn/Cd concentrations. Meanwhile, pretreatment with NADPH oxidase inhibitors prior to HM exposure markedly reduced HM-induced reactive oxygen species (ROS), which caused reductions in expressions of DNA methylase and demethylase in pretreated samples. The increased levels of HM-induced demethylation were suppressed with alleviated ROS stress, and a series of HM-related methylated loci were also ROS-related. Taken together, our study demonstrates that different HMs affect different DNA methylation sites in a dose-dependent manner and changes in DNA methylation under Mn/Cd stress are partly mediated by HM-induced ROS.

14.
Tree Physiol ; 42(9): 1812-1826, 2022 09 08.
Article in English | MEDLINE | ID: mdl-35412618

ABSTRACT

Hydrogen sulfide (H2S), is a crucial biological player in plants. Here, we primarily explored the interaction between sodium hydrosulfide (NaHS, a H2S donor) and the fluxes of Na+ and K+ from the salt glands of mangrove species Avicennia marina (Forsk.) Vierh. with non-invasive micro-test technology (NMT) and quantitative real-time PCR (qRT-PCR) approaches under salinity treatments. The results showed that under 400-mM NaCl treatment, the addition of 200-µM NaHS markedly increased the quantity of salt crystals in the adaxial epidermis of A. marina leaves, accompanied by an increase in the K+/Na+ ratio. Meanwhile, the endogenous content of H2S was dramatically elevated in this process. The NMT result revealed that the Na+ efflux was increased from salt glands, whereas K+ efflux was decreased with NaHS application. On the contrary, the effects of NaHS were reversed by H2S scavenger hypotaurine (HT), and DL-propargylglycine (PAG), an inhibitor of cystathionine-γ-lyase (CES, a H2S synthase). Moreover, enzymic assay revealed that NaHS increased the activities of plasma membrane and tonoplast H+-ATPase. qRT-PCR analysis revealed that NaHS significantly increased the genes transcript levels of tonoplast Na+/H+ antiporter (NHX1), plasma membrane Na+/H+ antiporter (SOS1), plasma membrane H+-ATPase (AHA1) and tonoplast H+-ATPase subunit c (VHA-c1), while suppressed above-mentioned gene expressions by the application of HT and PAG. Overall, H2S promotes Na+ secretion from the salt glands of A. marina by up-regulating the plasma membrane and tonoplast Na+/H+ antiporter and H+-ATPase.


Subject(s)
Avicennia , Hydrogen Sulfide , Adenosine Triphosphatases/metabolism , Animals , Hydrogen Sulfide/metabolism , Salt Gland/metabolism , Sodium/metabolism , Sodium Chloride/pharmacology , Sodium-Hydrogen Exchangers/genetics , Sodium-Hydrogen Exchangers/metabolism
15.
Plant Cell Environ ; 45(6): 1698-1718, 2022 06.
Article in English | MEDLINE | ID: mdl-35141923

ABSTRACT

Aquaporins (AQPs) play important roles in plant growth, development and tolerance to environmental stresses. To understand the role of AQPs in the mangrove plant Kandelia obovata, which has the ability to acquire water from seawater, we identified 34 AQPs in the K. obovata genome and analysed their structural features. Phylogenetic analysis revealed that KoAQPs are homologous to AQPs of Populus and Arabidopsis, which are evolutionarily conserved. The key amino acid residues were used to assess water-transport ability. Analysis of cis-acting elements in the promoters indicated that KoAQPs may be stress- and hormone-responsive. Subcellular localization of KoAQPs in yeast showed most KoAQPs function in the membrane system. That transgenic yeast with increased cell volume showed that some KoAQPs have significant water-transport activity, and the substrate sensitivity assay indicates that some KoAQPs can transport H2 O2 . The transcriptome data were used to analyze the expression patterns of KoAQPs in different tissues and developing fruits of K. obovata. In addition, real-time quantitative PCR analyses combined transcriptome data showed that KoAQPs have complex responses to environmental factors, including salinity, flooding and cold. Collectively, the transport of water and solutes by KoAQPs contributed to the adaptation of K. obovata to the coastal intertidal environment.


Subject(s)
Aquaporins , Rhizophoraceae , Aquaporins/genetics , Aquaporins/metabolism , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Rhizophoraceae/metabolism , Saccharomyces cerevisiae/metabolism , Water/metabolism
16.
Environ Pollut ; 297: 118762, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-34971744

ABSTRACT

In recent years, the scale of shrimp ponds has rapidly increased adjacent to mangrove forests. Discharge of shrimp pond effluent has led to degradation of the surrounding environment and reduction of biodiversity in the estuary. But it remains poorly understood how shrimp pond effluent affects functional traits and functional diversity of mangroves. We sampled roots, stems and leaves of Kandelia obovata and other mangrove plants, as well as sediments and pore water from shrimp pond effluent polluted area (P) and clean area (control area, C) in Zhangjiang Estuary in southeast coast of China. Twenty plant functional traits and six functional diversity indices were analyzed to explore the effects of shrimp pond effluent on individual plants and mangrove communities. The results showed that the discharge of shrimp pond effluent significantly affected the nutrient content in soils and pore water, for example, sediment NH4+ and NO3- concentration increased from 0.26 ± 0.06 to 0.77 ± 0.29 mg/g and from 0.05 ± 0.03 to 0.16 ± 0.05 mg/g, respectively, when comparing the C and P site. Furthermore, some mangrove plant functional traits such as plant height, diameter at breast height, canopy thickness and specific leaf area were significantly increased by the effluent discharge. Functional diversity in the polluted area reduced as a whole compared to the control area. In particular, ammonium and nitrate nitrogen input is the main reason to induce the changes of plant functional traits and functional diversity. Besides, the community structure changed from functional differentiation to functional convergence after shrimp pond effluent discharge. In addition, the long-term shrimp pond effluent discharge may lead to the ecological strategy shift of K. obovata, while different organs may adopt different ways of nutrient uptake and growth strategies in the face of effluent disturbance. In conclusion, pollution from shrimp pond does affect the functional traits of mangrove plants and functional diversity of mangrove community. These results provide strong evidence to assess the impact of effluent discharges on mangrove plants and provide theoretical basis for conservation and sustainable development of mangroves.


Subject(s)
Estuaries , Rhizophoraceae , Ponds , Soil , Wetlands
17.
J Hazard Mater ; 425: 127947, 2022 03 05.
Article in English | MEDLINE | ID: mdl-34896722

ABSTRACT

Cadmium (Cd) is a harmful heavy metal that affects the growth and development of plants. Nitrogen (N) is an essential nutrient for plants, and appropriate N management can improve Cd tolerance. The aim of our study was to explore the effects of different forms of N on the molecular and physiological responses of the hyperaccumulator Solanum nigrum to Cd toxicity. Measurement of biomass, photosynthetic parameters, and Cd2+ fluxes using non-invasive micro-test technique, Cd fluorescent dying, biochemical methods and quantitative real-time PCR analysis were performed in our study. Our results showed that ammonium (NH4+) has stronger Cd detoxification ability than nitrate (NO3-), which are likely attributed to the following three reasons: (1) NH4+ decreased the influx and accumulation of Cd2+ by regulating the transcription of Cd transport-related genes; (2) the ameliorative effects of NH4+ were accompanied by the increased retention of Cd in the cell walls of roots; and (3) NH4+ up-regulated SnExp expression.


Subject(s)
Ammonium Compounds , Soil Pollutants , Solanum nigrum , Biodegradation, Environmental , Cadmium/analysis , Cadmium/toxicity , Nitrates , Plant Roots/chemistry , Soil Pollutants/analysis
18.
Methods Inf Med ; 60(5-06): 123-132, 2021 12.
Article in English | MEDLINE | ID: mdl-34695871

ABSTRACT

BACKGROUND: AI-enabled Clinical Decision Support Systems (AI + CDSSs) were heralded to contribute greatly to the advancement of health care services. There is an increased availability of monetary funds and technical expertise invested in projects and proposals targeting the building and implementation of such systems. Therefore, understanding the actual system implementation status in clinical practice is imperative. OBJECTIVES: The aim of the study is to understand (1) the current situation of AI + CDSSs clinical implementations in Chinese hospitals and (2) concerns regarding AI + CDSSs current and future implementations. METHODS: We investigated 160 tertiary hospitals from six provinces and province-level cities. Descriptive analysis, two-sided Fisher exact test, and Mann-Whitney U-test were utilized for analysis. RESULTS: Thirty-eight of the surveyed hospitals (23.75%) had implemented AI + CDSSs. There were statistical differences on grade, scales, and medical volume between the two groups of hospitals (implemented vs. not-implemented AI + CDSSs, p <0.05). On the 5-point Likert scale, 81.58% (31/38) of respondents rated their overall satisfaction with the systems as "just neutral" to "satisfied." The three most common concerns were system functions improvement and integration into the clinical process, data quality and availability, and methodological bias. CONCLUSION: While AI + CDSSs were not yet widespread in Chinese clinical settings, professionals recognize the potential benefits and challenges regarding in-hospital AI + CDSSs.


Subject(s)
Decision Support Systems, Clinical , Artificial Intelligence , China , Hospitals , Surveys and Questionnaires
19.
Environ Pollut ; 290: 118004, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34454196

ABSTRACT

It is widely recognized that green infrastructures in urban ecosystems provides important ecosystem services, including air purification. The potential absorption of nitrogen oxides (NOx) by urban trees has not been fully quantified, although it is important for air pollution mitigation and the well-being of urban residents. In this study, four common tree species (Sophora japonica L., Fraxinus chinensis Roxb., Populus tomentosa Carrière, Sabina chinensis (L.)) in Beijing, China, were studied. The dual stable isotopes (15N and 18O) and a Bayesian isotope mixing model were applied to estimate the sources contributions of potential nitrogen sources to the roadside trees based on leaf and soil sampling in urban regions. The following order of sources contributions was determined: soil > dry deposition > traffic-related NOx. The capacity of urban trees for NOx removal in the city was estimated using a remote sensing and GIS approach, and the removal capacity was found to range from 0.79 to 1.11 g m-2 a-1 across administrative regions, indicating that 1304 tons of NOx could be potentially removed by urban trees in 2019. Our finding qualified the potential NOx removal by urban trees in terms of atmospheric pollution mitigation, highlighting the role of green infrastructure in air purification, which should be taken into account by stakeholders to manage green infrastructure as the basis of a nature-based approach.


Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/analysis , Air Pollution/analysis , Bayes Theorem , Beijing , China , Ecosystem , Environmental Monitoring , Isotopes
20.
Sci Total Environ ; 788: 147782, 2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34134386

ABSTRACT

Mangrove ecosystems are an important component of "blue carbon". However, it is not clear whether the stems play roles in the CH4 budget of mangrove ecosystems. This study investigated the CH4 emission from mangrove stems and its potential driving factors. We set up six sample plots in the Zhangjiang Estuary National Mangrove Nature Reserve, where Kandelia obovata, Avicennia marina and Aegiceras corniculata are the main mangrove tree species. Soil properties such as total carbon content, redox potential and salinity were determined in each plot. The dynamic chamber method was used to measure mangrove stems and soil CH4 fluxes. Combined field survey results with Principal Component Analysis (PCA) of soil properties, we divided the six plots into two sites (S1 and S2) to perform statistical analyses of stem CH4 fluxes. Then the CH4 fluxes from mangrove tree stems and soil were further scaled up to the ecosystem level through the mapping model. Under different backgrounds of soil properties, salinity and microbial biomass carbon were the main factors modified soil CH4 fluxes in the two sites, and further affected the stem CH4 fluxes of mangroves. The soil of both sites are sources of CH4, and the soil CH4 emission of S2 was about twice higher than that of S1. Results of upscaling model showed that mangrove stems in S1 were CH4 sinks with -105.65 g d-1. But stems in S2 were CH4 sources around 1448.24 g d-1. Taken together, our results suggested that CH4 emission from mangrove soils closely depends on soils properties. And mangrove stems were found to act as both CH4 sources and CH4 sinks depend on soil CH4 production. Therefore, when calculating the CH4 budget of the mangrove ecosystem, the contribution of mangrove plant stems cannot be ignored.


Subject(s)
Ecosystem , Methane , China , Estuaries , Methane/analysis , Plant Stems/chemistry , Soil , Wetlands
SELECTION OF CITATIONS
SEARCH DETAIL
...