Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phytomedicine ; 129: 155691, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38744232

ABSTRACT

BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) is a common chronic liver disease with few therapeutic options currently available. Traditional Chinese medicine has been used for thousands of years and exhibited remarkable advantages against such complicated disease for its "multi-component, multi-target and multi-pathway" characteristics. Compound Shouwu Jiangzhi Granule (CSJG) is a clinical empirical prescription for the treatment of NAFLD, but its pharmacological mechanism remains unknown. METHODS: The clinical efficacy of CSJG was retrospectively analyzed in NAFLD patients by comparing blood biomarkers levels and liver MR images before and after CSJG treatment. Then, high-fat/high-fructose (HFHF) diet-induced NAFLD mice were used to further confirm CSJG's effect against hepatic lipid accumulation through hepatic lipid determination and histopathological staining of liver samples. Next, the ingredients of CSJG were determined, and network pharmacology analysis was performed to predict potential targets of CSJG, followed by quantitative PCR (qPCR) and western blotting for verification. Then, lipidomics study was carried out to further explore the anti-NAFLD mechanism of CSJG from the perspective of triacylglyceride (TAG) synthesis but not free fatty acid (FFA) synthesis. The enzymes involved in this process were assayed by qPCR and western blotting. The potential interactions between the key enzymes of TAG synthesis and the active ingredients of CSJG were analyzed by molecular docking. RESULTS: CSJG attenuated blood lipid levels and hepatic fat accumulation in both NAFLD patients and mice. Although network pharmacology analysis revealed the FFA synthesis pathway, CSJG only slightly affected it. Through lipidomics analysis, GSJG was found to significantly block the synthesis of diglycerides (DAGs) and TAGs in the liver, with decreased DGAT2 and increased PLD1 protein expression, which diverted DAGs from the synthesis of TAGs to the production of PEs, PCs and PAs and thus lowed TAGs level. Molecular docking suggested that rhein, luteolin and liquiritigenin from CSJG might be involved in this regulation. CONCLUSION: Clinical and experimental evidence demonstrated that CSJG is a promising agent for the treatment of NAFLD. CSJG regulated TAGs synthesis to alleviate hepatic lipid accumulation. Rhein, luteolin and liquiritigenin from CSJG might play a role in it.


Subject(s)
Drugs, Chinese Herbal , Lipid Metabolism , Liver , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease , Triglycerides , Animals , Drugs, Chinese Herbal/pharmacology , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Triglycerides/metabolism , Triglycerides/blood , Humans , Male , Liver/drug effects , Liver/metabolism , Mice , Lipid Metabolism/drug effects , Retrospective Studies , Female , Diet, High-Fat , Disease Models, Animal , Middle Aged
2.
Nanoscale ; 13(31): 13231-13240, 2021 Aug 21.
Article in English | MEDLINE | ID: mdl-34477731

ABSTRACT

Although artemisinin (ART) has shown initial promise in cancer therapy, its therapeutic efficacy is limited by its low tumor inhibitory efficacy and unfavorable distribution. Considering the important role of heme in the specific parasite-killing effect of ART, we designed a liposomal nanostructure self-assembled from hemin-lipid (Hemesome) to co-deliver ART and hemin for cancer therapy. The synergistic chemotherapeutic and immunotherapeutic effects of hemin and ART were demonstrated both in vitro and in vivo. The liposome-like structure was relatively stable in the blood circulation and gastrointestinal tract environment, but dissociated in the tumor cell environment. The folic acid (FA) modification not only increased their efficiency for transport across the epithelium, but also increased their tumor accumulation. In mouse models, following oral administration of FA-Hemesome-ART nanoparticles (5 mg kg-1 ART in total) every other day and intraperitoneal injection with a programmed death-ligand 1 antibody (aPD-L1, 70 µg per mouse in total), MC38 tumors were completely inhibited within 30 days. The cured mice remained tumor-free 30 days after rechallenging them with another inoculation of MC38 cells due to the strong immune memory effect.


Subject(s)
Artemisinins , Nanoparticles , Neoplasms , Animals , Cell Line, Tumor , Hemin , Immunotherapy , Lipids , Mice , Neoplasms/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...