Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Publication year range
1.
Molecules ; 29(8)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38675648

ABSTRACT

Currently, the planting of 'Qi-Nan' is continuously increasing, yet a substantial amount of 'Qi-Nan' leaves have not been properly exploited. To improve the 'Qi-Nan' tree 's utilization value, 'Qi-Nan' leaves were used as a raw material. An ultrasound-assisted method was performed to obtain the flavonoids from the 'Qi-Nan' leaves, followed by optimization of the extraction factors using a one-way and response surface methodology to enhance the extraction of flavonoids. Subsequently, the composition of the flavonoids, as well as their bioactive abilities, were analyzed by ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS) and in vitro activity testing methods. The findings demonstrated that a 1:50 material-to-liquid ratio, 60% ethanol concentration, and ultrasound-assisted extraction time of 30 min were the ideal procedures for extracting flavonoids (flavonoid content: 6.68%). Meanwhile, the 'Qi-Nan' leaves possessed the antioxidant and medicinal potential to prevent diabetes and Alzheimer 's disease, as evidenced by the semi-inhibitory concentrations (IC50 values) of flavonoid extracts for scavenging DPPH• free radicals, scavenging ABTS•+ free radicals, inhibiting acetylcholinesterase, and inhibiting α-glucosidase, which were 12.64 µg/mL, 66.58 µg/mL, 102.31 µg/mL, and 38.76 µg/mL, respectively, which indicated that the 'Qi-Nan' leaves possessed the properties of antioxidant and medicinal potential for the prevention of Alzheimer 's disease and diabetes.


Subject(s)
Antioxidants , Flavonoids , Plant Extracts , Plant Leaves , Flavonoids/analysis , Flavonoids/chemistry , Flavonoids/isolation & purification , Plant Leaves/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Chromatography, High Pressure Liquid , Thymelaeaceae/chemistry
2.
ACS Appl Bio Mater ; 3(10): 7087-7094, 2020 Oct 19.
Article in English | MEDLINE | ID: mdl-35019368

ABSTRACT

Weak layers in bamboo, which are prone to the generation of cracks or are the preferred routes for crack growth, govern the machining processes and applications of bamboo. Weak layers are avoided during storing but are utilized during splitting and slicing. Gaining an understanding of the weak layers is a priority that will allow for the determination of whether to avoid or utilize them. In this study, scanning electron microscopy was used to observe the weak layers at the cellular and subcellular levels. A nanoindentation instrument and a Raman microscope were used to quantitatively characterize the mechanical properties and chemical components of these weak layers. The results show that among the three types of bamboo cells, vessel cells were the most vulnerable to damage, while fiber cells were the least susceptible to damage. The weak layers at the subcellular level were compound middle lamella (CML), thin layers of cell walls, and pits. The average storage modulus values were as follows: 13.7 GPa for CML, 17.0 GPa for pits, 20.6 GPa for thin layers, and 25.3 GPa for thick layers. Compared with the thick layers, the maximum decrement of cellulose content was 51% in CML and 41% in thin layers. With the lowest cellulose content, CML was the likeliest subcellular structure in which cracks propagated. The hardness of the pits was lower than that of the adjacent non-pit areas. The mechanical properties of bamboo increased by targeted modification of the weak layers. This work demonstrates a comprehensive investigation into weak layers of bamboo and quantitatively visualizes their mechanical and chemical properties.

3.
Materials (Basel) ; 11(12)2018 Dec 19.
Article in English | MEDLINE | ID: mdl-30572674

ABSTRACT

A Fe3+-doped SiO2/TiO2 composite film (Fe3+-doped STCF) was prepared on a wood surface via a sol⁻gel method to improve its photocatalytic activity and hydrophobicity. The structure of the composite film was analyzed by Fourier Transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The photocatalytic activity toward degradation of methyl orange and its hydrophobic nature were investigated. The results showed that the composite film was anatase TiO2 crystal form, and the addition of Fe3+ ions and SiO2 enhanced the diffraction peaks for the anatase crystal form. The photocatalytic activity of the wood coated with the composite film was enhanced. The highest degradation percentage was at 1 wt % Fe3+ (40.37%), and the degradation ability of the wood towards methyl orange solution was further improved under acidic conditions. In addition, the composite film was hydrophobic, and the hydrophobic property was enhanced as the immersion time in the sol increased. The wood surface coated with Fe3+-doped STCF exhibited strong hydrophobicity and photocatalytic activity, which could effectively prevent moisture from adhering to the surface and degrade organic pollutants; thus, the modified wood surface had good self-cleaning function.

4.
Materials (Basel) ; 10(3)2017 Feb 27.
Article in English | MEDLINE | ID: mdl-28772597

ABSTRACT

Bamboo materials with improved antibacterial performance based on ZnO and graphene oxide (GO) were fabricated by vacuum impregnation and hydrothermal strategies. The Zn2+ ions and GO nanosheets were firstly infiltrated into the bamboo structure, followed by dehydration and crystallization upon hydrothermal treatment, leading to the formation of ZnO/GO nanocomposites anchored in the bulk bamboo. The bamboo composites were characterized by several techniques including scanning electron microscopy (SEM), Fourier transform infrared spectra (FTIR), and X-ray diffraction (XRD), which confirmed the existence of GO and ZnO in the composites. Antibacterial performances of bamboo samples were evaluated by the bacteriostatic circle method. The introduction of ZnO/GO nanocomposites into bamboo yielded ZnO/GO/bamboo materials which exhibited significant antibacterial activity against Escherichia coli (E. coli, Gram-negative) and Bacillus subtilis (B. subtilis, Gram-positive) bacteria and high thermal stability. The antimicrobial bamboo would be expected to be a promising material for the application in the furniture, decoration, and construction industry.

5.
Guang Pu Xue Yu Guang Pu Fen Xi ; 37(1): 103-8, 2017 01.
Article in Chinese | MEDLINE | ID: mdl-30192492

ABSTRACT

Nano-IR technology was firstly employed on bamboo fiber research with purpose to further understand the fine structure of bamboo fiber cell wall. Chemical constituent distribution of bamboo fiber was studied, and the feasibility of the novel technology was discussed by comparing with other traditional methods. The results showed that Nano-IR technology, which has made a breakthrough on diffraction limit of traditional infrared spectroscopy, can acquire nano-scale infrared spectrum of bamboo cell wall in situ condition. The characteristic peak positions of Nano-IR spectrum is basically the same with that of microscopic FTIR spectrum, indicating that Nano-IR spectrum can reveal the chemical information of bamboo cell wall. The results of the present work suggested that nano-IR technology could be an effective research tool in research of nano chemical composition distribution of bamboo cell wall.


Subject(s)
Cell Wall , Spectrophotometry, Infrared
6.
Bioresour Technol ; 209: 50-5, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26950755

ABSTRACT

Bamboo and masson pine was torrefied with 300°C of temperature for 2.0h of residence time using GSL 1600X tube furnace in the argon atmosphere. Torrefied bamboo and masson pine particles were uniform mixed with different weight ratios. Pyrolysis and combustion characteristics were investigated through thermogravimetry (TGA). The results showed that pyrolysis and combustion process of all samples included three steps even though their characteristics were different. Torrefied biomass had a higher pyrolysis and combustion temperature, due to moisture and volatile removal and thermal decomposition of hemicelluloses, cellulose and lignin during torrefaction process. Torrefaction also increased high heating value, ash content and C/H and C/O ratio of biomass. The synergy of torrefied bamboo and torrefied mason pine was not found during pyrolysis and combustion process of blends. The results from this research will be very important and helpful to develop and utilize the wastes of masson pine and bamboo for energy products.


Subject(s)
Biofuels , Pinus/chemistry , Sasa/chemistry , Wood/chemistry , Biomass , Cellulose , Temperature , Thermogravimetry
7.
Guang Pu Xue Yu Guang Pu Fen Xi ; 36(11): 3704-8, 2016 Nov.
Article in Chinese | MEDLINE | ID: mdl-30226693

ABSTRACT

The crystal structure of cellulose will directly affect the properties of bamboo fiber -reinforced composite, but the unit cell of native cellulose in bamboo has never been investigated. The most accepted model for the structure of native cellulose is Meyer-Misch model which provides a reference to understand the unit cell of native cellulose in bamboo. The native cellulose consists of two different crystal structures (Ⅰ(α) and Ⅰ(ß)) which exist in different plants with different proportions. Because of this situation, the crystal structure of bamboo cellulose should have a unique model. The moso bamboo (Phyllostachys edulis (Carr. ) H. de Lehaie)was selected. The crystal structure of cellulose of bamboo was investigated with two dimensional synchrotron radiation wide angle X-ray scattering (SR-WAXS). The values of the interplanar spacings of each peak were obtained from SR-WAXS patterns, and then crystal structure parameters were calculated according to monoclinic crystal system. The results show that the fibre axis of a bamboo cellulose unit cell with a monoclinic unit cell of a=8.35 Å, b (fiber axis)=10.38 Å, c=8.02 Å, ß=84.99°. This model has a two antiparallel arrangement for the chains in unit cell, with four glucose residues. Thus, the model may be used to provide a theoretical basis for high value-added bamboo fiber -reinforced composite.


Subject(s)
Poaceae , Synchrotrons , Cellulose , Radiography , Scattering, Radiation , X-Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...