Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Soft Matter ; 19(45): 8863-8870, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37955055

ABSTRACT

We study the nematic-to-isotropic phase transitions in thin slabs of nematic liquid crystals with photopatterned director fields of topological defect arrays at constant heating rates and show that the transition kinetics is significantly impacted by both the heating rate and the topological strengths of these defects. Specifically, with ±1/2 defect arrays, the isotropic domains emerge from the defect cores when the heating rate is high, while from random places when the heating rate is low. With ±1 defect arrays, the isotropic domains always emerge from the defect cores regardless of the heating rate. Furthermore, the isotropic domains show significant movements at slow heating rates, and the total area of the isotropic domains grows with the temperature T following a simple power law (T - T')γ, where the exponent γ is approximately 1 in most cases and is 2/3 for the ±1 defect arrays at low heating rates when the isotropic domains are pinned on the defect cores. We attribute this phenomenon to an interplay between the surface tension and bulk free energy.

2.
Curr Biol ; 33(14): 2888-2896.e2, 2023 07 24.
Article in English | MEDLINE | ID: mdl-37385258

ABSTRACT

The extensive biodiversification of butterflies and moths (Lepidoptera) is partly attributed to their unique mouthparts (proboscis [Pr]) that can span in length from less than 1 mm to over 280 mm in Darwin's sphinx moths. Lepidoptera, similar to other insects, are believed to inhale and exhale respiratory gases only through valve-like spiracles on their thorax and abdomen, making gas exchange through the narrow tracheae (Tr) challenging for the elongated Pr. How Lepidoptera overcome distance effects for gas transport to the Pr is an open question that is important to understanding how the Pr elongated over evolutionary time. Here, we show with scanning electron microscopy and X-ray imaging that distance effects on gas exchange are overcome by previously unreported micropores on the Pr surface and by superhydrophobic Tr that prevent water loss and entry. We find that the density of micropores decreases monotonically along the Pr length with the maxima proportional to the Pr length and that micropore diameters produce a Knudsen number at the boundary between the slip and transition flow regimes. By numerical estimation, we further show that the respiratory gas exchange for the Pr predominantly occurs via diffusion through the micropores. These adaptations are key innovations vital to Pr elongation, which likely facilitated lepidopteran biodiversification and the radiation of angiosperms by coevolutionary processes.


Subject(s)
Butterflies , Moths , Animals , Adaptation, Physiological , Acclimatization
3.
Small ; 17(2): e2005474, 2021 01.
Article in English | MEDLINE | ID: mdl-33306269

ABSTRACT

Precise quantification of intracellular iron contents is important to biomedical applications of magnetic nanoparticles. Current approaches for iron quantification rely on specialized instruments while most only yield iron quantities averaged over plenty of cells. Here, a simple and robust approach, combining digital optical microscopy with the Beer-Lambert's law, that allows for imaging stainable iron distribution in individual cells and the quantification of stainable iron contents with an unprecedented accuracy of femtogram per pixel, is presented. It is further shown that this approach enables studying of the internalization and reduction dynamics of super-paramagnetic iron oxide nanoparticles (SPIONs) by stem cells in single cell level.


Subject(s)
Magnetite Nanoparticles , Nanoparticles , Iron , Magnetic Resonance Imaging , Magnetics , Optical Imaging
4.
Sci Adv ; 6(20): eaaz6485, 2020 05.
Article in English | MEDLINE | ID: mdl-32426499

ABSTRACT

Eukaryotic cells in living tissues form dynamic patterns with spatially varying orientational order that affects important physiological processes such as apoptosis and cell migration. The challenge is how to impart a predesigned map of orientational order onto a growing tissue. Here, we demonstrate an approach to produce cell monolayers of human dermal fibroblasts with predesigned orientational patterns and topological defects using a photoaligned liquid crystal elastomer (LCE) that swells anisotropically in an aqueous medium. The patterns inscribed into the LCE are replicated by the tissue monolayer and cause a strong spatial variation of cells phenotype, their surface density, and number density fluctuations. Unbinding dynamics of defect pairs intrinsic to active matter is suppressed by anisotropic surface anchoring allowing the estimation of the elastic characteristics of the tissues. The demonstrated patterned LCE approach has potential to control the collective behavior of cells in living tissues, cell differentiation, and tissue morphogenesis.


Subject(s)
Liquid Crystals , Anisotropy , Elastomers/chemistry , Fibroblasts , Humans , Liquid Crystals/chemistry , Water
5.
Soft Matter ; 16(8): 1989-1995, 2020 Feb 26.
Article in English | MEDLINE | ID: mdl-31998924

ABSTRACT

Thermophoresis, or the directional motion of colloidal particles in liquids driven by a temperature gradient, is of both fundamental interest and practical use. In this work we explore the thermophoresis of colloids suspended in nematic liquid crystals (LCs). We observe that the motion of these colloids is fundamentally different from that in isotropic systems as a result of elastic distortions in the director fields caused by the colloidal inclusions. In the case of a sufficiently large local temperature and gradient, the elastic energy drives negative thermophoresis of immersed particles, which has a strongly nonlinear dependence on temperature. We develop a theory that incorporates elastic energy minimization into the traditional thermophoretic formulation and demonstrated a good agreement with experimental observations. We also examine the temperature dependence of the effective viscosity of the colloids and highlight the large magnitude of the Soret coefficient (|ST| > 5000), which results from the inherent enhancement in thermophoresis due to elastophoretic considerations and suppression of Brownian diffusion in LC media.

6.
Soft Matter ; 16(6): 1668-1677, 2020 Feb 14.
Article in English | MEDLINE | ID: mdl-31967174

ABSTRACT

Vitrimers have the characteristics of shape-reforming and surface-welding, and have the same excellent mechanical properties as thermosets; so vitrimers hold the promise of a broad alternative to traditional plastics. Since their initial introduction in 2011, vitrimers have been applied to many unique applications such as reworkable composites and liquid crystal elastomer actuators. A series of experiments have investigated the effects of reprocessing conditions (such as temperature, time, and pressure) on recycled materials. However, the effect of particle size on the mechanical properties of recycled materials has not been reported. In this paper, we conducted an experimental study on the recovery of epoxy-acid vitrimers of different particle sizes. Epoxy-acid vitrimer powders with different particle size distributions were prepared and characterized. The effects of particle size on the mechanical properties of regenerated epoxy-acid vitrimers were investigated by dynamic mechanical analysis and uniaxial tensile tests. In addition, other processing parameters such as temperature, time, and pressure are discussed, as well as their interaction with particle size. This study helped to refine the vitrimer reprocessing condition parameter toolbox, providing experimental support for the easy and reliable control of the kinetics of the bond exchange reaction.

7.
ACS Appl Mater Interfaces ; 11(16): 15007-15013, 2019 Apr 24.
Article in English | MEDLINE | ID: mdl-30912438

ABSTRACT

Controlled placement of microparticles is of prime importance in production of microscale superstructures. In this work, we demonstrate the remote control of microparticle placement using a photoactivated surface profile of a liquid crystal elastomer (LCE) coating. We employ light-responsive LCEs with preimposed patterns of molecular orientation (director) in the plane of coating. Upon UV illumination, these in-plane director distortions translate into deterministic topographic change of the LCE coating. Microparticles placed at the interface between the LCE coating and water, guided by gravity, gather at the bottom of photoinduced troughs. The effect is reversible: when the substrates are irradiated with visible light, the coatings become flat and the microparticle arrays disorganize again. The proposed noncontact manipulation of particles by photoactivated LCEs may be useful in development of drug delivery or tissue engineering applications.

8.
Adv Mater ; 31(18): e1808028, 2019 May.
Article in English | MEDLINE | ID: mdl-30907480

ABSTRACT

Microlenses are desired by a wide range of industrial applications while it is always challenging to make them with diffraction-limited quality. Here, it is shown that high-quality microlenses based on Pancharatnam-Berry (PB) phases can be made with liquid crystal polymers by using a plasmonic photopatterning technique. Based on the generalized Snell's law for the PB phases, PB microlenses with a range of focal lengths and f-numbers are designed and fabricated and their point-spread functions and ability to image micrometer-sized particles are carefully characterized. The results show that these PB microlenses with f-number down to 2 are all diffraction-limited. The capability of arraying these PB microlenses with 100% filling factor with a step-and-flash approach is further demonstrated.

9.
Nat Commun ; 9(1): 1130, 2018 03 14.
Article in English | MEDLINE | ID: mdl-29540690

ABSTRACT

The original version of this Article contained errors in Figs. 1a, 2a, 3a, and 4b, in which the units on the scale bars incorrectly read 'µm' rather than the correct 'nm.' This has been corrected in both the PDF and HTML versions of the Article.

10.
Nat Commun ; 9(1): 456, 2018 01 31.
Article in English | MEDLINE | ID: mdl-29386512

ABSTRACT

Stimuli-responsive liquid crystal elastomers with molecular orientation coupled to rubber-like elasticity show a great potential as elements in soft robotics, sensing, and transport systems. The orientational order defines their mechanical response to external stimuli, such as thermally activated muscle-like contraction. Here we demonstrate a dynamic thermal control of the surface topography of an elastomer prepared as a coating with a pattern of in-plane molecular orientation. The inscribed pattern determines whether the coating develops elevations, depressions, or in-plane deformations when the temperature changes. The deterministic dependence of the out-of-plane dynamic profile on the in-plane orientation is explained by activation forces. These forces are caused by stretching-contraction of the polymer networks and by spatially varying molecular orientation. The activation force concept brings the responsive liquid crystal elastomers into the domain of active matter. The demonstrated relationship can be used to design coatings with functionalities that mimic biological tissues such as skin.

11.
J Vis Exp ; (130)2017 12 20.
Article in English | MEDLINE | ID: mdl-29286409

ABSTRACT

Fluid-feeding insects ingest a variety of liquids, which are present in the environment as pools, films, or confined to small pores. Studies of liquid acquisition require assessing mouthpart structure and function relationships; however, fluid uptake mechanisms are historically inferred from observations of structural architecture, sometimes unaccompanied with experimental evidence. Here, we report a novel method for assessing fluid-uptake abilities with butterflies (Lepidoptera) and flies (Diptera) using small amounts of liquids. Insects are fed with a 20% sucrose solution mixed with fluorescent, magnetic nanoparticles from filter papers of specific pore sizes. The crop (internal structure used for storing fluids) is removed from the insect and placed on a confocal microscope. A magnet is waved by the crop to determine the presence of nanoparticles, which indicate if the insects are able to ingest fluids. This methodology is used to reveal a widespread feeding mechanism (capillary action and liquid bridge formation) that is potentially shared among Lepidoptera and Diptera when feeding from porous surfaces. In addition, this method can be used for studies of feeding mechanisms among a variety of fluid-feeding insects, including those important in disease transmission and biomimetics, and potentially other studies that involve nano- or micro-sized conduits where liquid transport requires verification.


Subject(s)
Butterflies/physiology , Diptera/physiology , Drinking Behavior/physiology , Fluorescent Dyes/administration & dosage , Magnetite Nanoparticles/administration & dosage , Animals , Butterflies/metabolism , Diptera/metabolism , Fluorescent Dyes/pharmacokinetics
12.
Adv Mater ; 29(21)2017 Jun.
Article in English | MEDLINE | ID: mdl-28295687

ABSTRACT

Controlling supramolecular self-assembly in water-based solutions is an important problem of interdisciplinary character that impacts the development of many functional materials and systems. Significant progress in aqueous self-assembly and templating has been demonstrated by using lyotropic chromonic liquid crystals (LCLCs) as these materials show spontaneous orientational order caused by unidirectional stacking of plank-like molecules into elongated aggregates. In this work, it is demonstrated that the alignment direction of chromonic assemblies can be patterned into complex spatially-varying structures with very high micrometer-scale precision. The approach uses photoalignment with light beams that exhibit a spatially-varying direction of light polarization. The state of polarization is imprinted into a layer of photosensitive dye that is protected against dissolution into the LCLC by a liquid crystalline polymer layer. The demonstrated level of control over the spatial orientation of LCLC opens opportunities for engineering materials and devices for optical and biological applications.

13.
Proc Biol Sci ; 284(1846)2017 01 11.
Article in English | MEDLINE | ID: mdl-28053058

ABSTRACT

Fluid-feeding insects, such as butterflies, moths and flies (20% of all animal species), are faced with the common selection pressure of having to remove and feed on trace amounts of fluids from porous surfaces. Insects able to acquire fluids that are confined to pores during drought conditions would have an adaptive advantage and increased fitness over other individuals. Here, we performed feeding trials using solutions with magnetic nanoparticles to show that butterflies and flies have mouthparts adapted to pull liquids from porous surfaces using capillary action as the governing principle. In addition, the ability to feed on the liquids collected from pores depends on a relationship between the diameter of the mouthpart conduits and substrate pore size diameter; insects with mouthpart conduit diameters larger than the pores cannot successfully feed, thus there is a limiting substrate pore size from which each species can acquire liquids for fluid uptake. Given that natural selection independently favoured mouthpart architectures that support these methods of fluid uptake (Diptera and Lepidoptera share a common ancestor 280 Ma that had chewing mouthparts), we suggest that the convergence of this mechanism advocates this as an optimal strategy for pulling trace amounts of fluids from porous surfaces.


Subject(s)
Animal Structures/anatomy & histology , Butterflies/anatomy & histology , Feeding Behavior , Moths/anatomy & histology , Animals
14.
J Phys Condens Matter ; 29(1): 014005, 2017 Jan 11.
Article in English | MEDLINE | ID: mdl-27830662

ABSTRACT

Placing colloidal particles in predesigned sites represents a major challenge of the current state-of-the-art colloidal science. Nematic liquid crystals with spatially varying director patterns represent a promising approach to achieve a well-controlled placement of colloidal particles thanks to the elastic forces between the particles and the surrounding landscape of molecular orientation. Here we demonstrate how the spatially varying director field can be used to control placement of non-spherical particles of boomerang shape. The boomerang colloids create director distortions of a dipolar symmetry. When a boomerang particle is placed in a periodic splay-bend director pattern, it migrates towards the region of a maximum bend. The behavior is contrasted to that one of spherical particles with normal surface anchoring, which also produce dipolar director distortions, but prefer to compartmentalize into the regions with a maximum splay. The splay-bend periodic landscape thus allows one to spatially separate these two types of particles. By exploring overdamped dynamics of the colloids, we determine elastic driving forces responsible for the preferential placement. Control of colloidal locations through patterned molecular orientation can be explored for future applications in microfluidic, lab on a chip, sensing and sorting devices.

15.
Science ; 354(6314): 882-885, 2016 11 18.
Article in English | MEDLINE | ID: mdl-27856907

ABSTRACT

Self-propelled bacteria are marvels of nature with a potential to power dynamic materials and microsystems of the future. The challenge lies in commanding their chaotic behavior. By dispersing swimming Bacillus subtilis in a liquid crystalline environment with spatially varying orientation of the anisotropy axis, we demonstrate control over the distribution of bacterial concentration, as well as the geometry and polarity of their trajectories. Bacteria recognize subtle differences in liquid crystal deformations, engaging in bipolar swimming in regions of pure splay and bend but switching to unipolar swimming in mixed splay-bend regions. They differentiate topological defects, heading toward defects of positive topological charge and avoiding negative charges. Sensitivity of bacteria to preimposed orientational patterns represents a previously unknown facet of the interplay between hydrodynamics and topology of active matter.


Subject(s)
Bacillus subtilis/physiology , Liquid Crystals , Locomotion , Anisotropy , Hydrodynamics , Microscopy, Polarization
16.
Sci Adv ; 2(9): e1600932, 2016 09.
Article in English | MEDLINE | ID: mdl-27652343

ABSTRACT

Colloids self-assemble into various organized superstructures determined by particle interactions. There is tremendous progress in both the scientific understanding and the applications of self-assemblies of single-type identical particles. Forming superstructures in which the colloidal particles occupy predesigned sites and remain in these sites despite thermal fluctuations represents a major challenge of the current state of the art. We propose a versatile approach to directing placement of colloids using nematic liquid crystals with spatially varying molecular orientation preimposed by substrate photoalignment. Colloidal particles in a nematic environment are subject to the long-range elastic forces originating in the orientational order of the nematic. Gradients of the orientational order create an elastic energy landscape that drives the colloids into locations with preferred type of deformations. As an example, we demonstrate that colloidal spheres with perpendicular surface anchoring are driven into the regions of maximum splay, whereas spheres with tangential surface anchoring settle into the regions of bend. Elastic forces responsible for preferential placement are measured by exploring overdamped dynamics of the colloids. Control of colloidal self-assembly through patterned molecular orientation opens new opportunities for designing materials and devices in which particles should be placed in predesigned locations.


Subject(s)
Colloids/chemistry , Liquid Crystals/chemistry , Models, Chemical , Models, Molecular , Computer Simulation , Crystallization , Molecular Conformation , Molecular Dynamics Simulation , Surface Properties
17.
Soft Matter ; 12(30): 6496, 2016 Aug 14.
Article in English | MEDLINE | ID: mdl-27433945

ABSTRACT

Correction for 'Cholesteric liquid crystals in rectangular microchannels: skyrmions and stripes' by Yubing Guo et al., Soft Matter, 2016, DOI: 10.1039/c6sm01190j.

18.
Soft Matter ; 12(29): 6312-20, 2016 Jul 20.
Article in English | MEDLINE | ID: mdl-27396898

ABSTRACT

In this paper, we present experimental and numerical studies on the microstructures of a cholesteric liquid crystal (CLC) confined in rectangular micron-channels. By using a sequence of microfabrication techniques we fabricated the micro-sized channels with accurately controlled size, aspect ratio and homeotropic surface anchoring. Through optical microscopic studies we established a phase diagram for the liquid crystal defect textures as a function of the channel depth and width. For the channel width larger than ∼2 times the cholesteric pitch p, the LC molecules are oriented primarily vertical to the channel when the channel depth is below 0.75p, form bubble domain defects when the channel depth is around 0.75p, and form stripe textures when the cell depth is above the cholesteric pitch p. In addition, the bubble domain size and the stripe texture periodicity are found to grow with the increase of the channel width. For the channel width smaller than ∼2p and the channel depth between 0.6p to 1.1p, no textures can be observed in the channels. Numerical simulations based on a director tensor relaxation approach yield detailed molecular director fields, and show that the bubble domain defects are baby-skyrmions and that the stripes are the first type of cholesteric fingerprints. A comparison with previous experiments and numerical simulations indicates that the size of the microchannels also influences what type of soliton-like topological textures form in the CLCs confined in the channels.

19.
Soft Matter ; 12(19): 4318-23, 2016 05 11.
Article in English | MEDLINE | ID: mdl-27079870

ABSTRACT

Prior studies have shown that low symmetry particles such as micro-boomerangs exhibit behaviour of Brownian motion rather different from that of high symmetry particles because convenient tracking points (TPs) are usually inconsistent with their center of hydrodynamic stress (CoH) where the translational and rotational motions are decoupled. In this paper we study the effects of the translation-rotation coupling on the displacement probability distribution functions (PDFs) of the boomerang colloid particles with symmetric arm length. By tracking the motions of different points on the particle symmetry axis, we show that as the distance between the TP and the CoH is increased, the effects of translation-rotation coupling becomes pronounced, making the short-time 2D PDF for fixed initial orientation to change from elliptical, to bean and then to crescent shape, and the angle averaged PDFs change from ellipsoidal-particle-like PDF to a shape with a Gaussian top and long displacement tails. We also observed that at long times the PDFs revert to Gaussian. These 2D PDF shapes provide a clear physical picture of the non-zero mean displacements observed in boomerangs particles.

20.
Adv Mater ; 28(12): 2353-8, 2016 Mar 23.
Article in English | MEDLINE | ID: mdl-26800114

ABSTRACT

A plasmonic photopatterning technique is proposed and demonstrated for aligning the molecular orientation in liquid crystals (LCs) in patterns with designer complexity. Using plasmonic metamasks in which target molecular directors are encoded, LC alignments of arbitrary planar patterns can be achieved in a repeatable and scalable fashion withunprecedentedly high spatial resolution and high throughput.

SELECTION OF CITATIONS
SEARCH DETAIL
...