Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale Res Lett ; 6(1): 6, 2011 Dec.
Article in English | MEDLINE | ID: mdl-27502630

ABSTRACT

Amorphous GaSb nanofibers were obtained by ion beam irradiation of bulk GaSb single-crystal wafers, resulting in fibers with diameters of ~20 nm. The Raman spectra and photoluminescence (PL) of the ion irradiation-induced nanofibers before and after annealing were studied. Results show that the Raman intensity of the GaSb LO phonon mode decreased after ion beam irradiation as a result of the formation of the amorphous nanofibers. A new mode is observed at ~155 cm(-1) both from the unannealed and annealed GaSb nanofiber samples related to the A1g mode of Sb-Sb bond vibration. Room temperature PL measurements of the annealed nanofibers present a wide feature band at ~1.4-1.6 eV. The room temperature PL properties of the irradiated samples presents a large blue shift compared to bulk GaSb. Annealed nanofibers and annealed nanofibers with Au nanodots present two different PL peaks (400 and 540 nm), both of which may originate from Ga or O vacancies in GaO. The enhanced PL and new band characteristics in nanostructured GaSb suggest that the nanostructured fibers may have unique applications in optoelectronic devices.

2.
Chem Commun (Camb) ; 46(41): 7837-9, 2010 Nov 07.
Article in English | MEDLINE | ID: mdl-20830332

ABSTRACT

Epitaxial NbC thin films were grown by a chemical solution technique, polymer assisted deposition. High quality epitaxial NbC film showed a transition temperature of 10 K and a hardness of 19.54 GPa.

3.
Phys Rev Lett ; 100(7): 076103, 2008 Feb 22.
Article in English | MEDLINE | ID: mdl-18352573

ABSTRACT

The morphological evolution of a GaAs surface induced by a focused ion beam (FIB) has been investigated by in situ electron microscopy. Under off-normal bombardment without sample rotation, Ga droplets with sizes from 70 to 25 nm in diameter on the GaAs surface can self-assemble into a highly ordered hexagonal pattern instead of Ostwald ripening or coalescence. The mechanism relies on a balance between anisotropic loss of atoms on the surface of droplets due to sputtering and an anisotropic supply of atoms on the substrate surface due to preferential sputtering of As. The ratio of wavelength to the droplet diameter predicted by this model is in excellent agreement with experimental observations.

SELECTION OF CITATIONS
SEARCH DETAIL
...