Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 94(31): 10921-10929, 2022 08 09.
Article in English | MEDLINE | ID: mdl-35904339

ABSTRACT

Thanks to its preparatory ease, close affinity, and low cost, the aptasensor can serve as a promising substitute for antibody-dependent biosensors. However, the available aptasensors are mostly subject to a single-mode readout and the interference of unbound aptamers in solution and non-target-induced transition events. Herein, we proposed a multimodal aptasensor for multimode detection of ochratoxin A (OTA) with cross-validation using the 3'-6-carboxyfluorescein (FAM)-enhanced exonuclease I (Exo I) tool and magnetic microbead carrier. Specifically, the 3'-FAM-labeled aptamer/biotinylated-cDNA hybrids were immobilized onto streptavidin-magnetic microbeads via streptavidin-biotin interaction. With the presence of OTA, an antiparallel G-quadruplex conformation was formed, protecting the 3'-FAM labels from Exo I digestion, and then anti-FAM-horseradish peroxidase (HRP) was bound via specific antigen-antibody affinity; for the aptamers without the protection of OTA, the distal ssDNA was hydrolyzed from 3' → 5', releasing 3'-FAM labels to the solution. Therefore, the OTA was detected by analyzing the "signal-off" fluorescence of the supernatant and two "signal-on" signals in electrochemistry and colorimetry through the detection of the coating magnetic microbeads in HRP's substrate. The results showed that the 3'-FAM labels increased the activity of Exo I, producing a low background due to a more thorough digestion of unbound aptamers. The proposed multimodal aptasensor successfully detected the OTA in actual samples. This work first provides a novel strategy for the development of aptasensors with Exo I and 3'-FAM labels, broadening the application of aptamer in the multimode detection of small molecules.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Ochratoxins , Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , Exodeoxyribonucleases , Limit of Detection , Magnetic Phenomena , Microspheres , Ochratoxins/analysis , Streptavidin/chemistry
2.
ACS Sens ; 6(3): 1348-1356, 2021 03 26.
Article in English | MEDLINE | ID: mdl-33657808

ABSTRACT

Herein, an interface-based DNA nanosieve that has the ability to differentiate ssDNA from dsDNA has been demonstrated for the first time. The DNA nanosieve could be readily built through thiol-DNA's self-assembly on the gold electrode surface, and its cavity size was tunable by varying the concentration of thiol-DNAs. Electrochemical chronocoulometry using [Ru(NH3)6]3+ as redox revealed that the average probe-to-probe separation in the 1 µM thiol-DNA-modified gold electrode was 10.6 ± 0.3 nm so that the rigid dsDNA with a length of ∼17 nm could not permeate the nanosieve, whereas the randomly coiled ssDNA could enter it due to its high flexibility, which has been demonstrated by square wave voltammetry and methylene blue labels through an upside-down hybridization format. After combining the transiently binding characteristic of a short DNA duplex and introducing a regenerative probe (the counterpart of ssDNA), a highly reproducible nanosieve-based E-DNA model was obtained with a relative standard deviation (RSD) as low as 2.7% over seven cycles. Finally, we built a regenerative nanosieve-based E-DNA sensor using a ligation cycle reaction as an ssDNA amplification strategy and realized one-sensor-based continuous measurement to multiple clinical samples with excellent allele-typing performance. This work holds great potential in low-cost and high-throughput analysis between biosensors and biochips and also opens up a new avenue in nucleic acid flexibility-based DNA materials for future applications in DNA origami and molecular logic gates.


Subject(s)
Biosensing Techniques , Nucleic Acids , Alleles , DNA/genetics , Nucleic Acid Hybridization
3.
Anal Chem ; 93(2): 911-919, 2021 01 19.
Article in English | MEDLINE | ID: mdl-33284015

ABSTRACT

Accurate and sensitive detection of single-base mutations in RNAs is of great value in basic studies of life science and medical diagnostics. However, the current available RNA detection methods are challenged by heterogeneous clinical samples in which trace RNA mutants usually existed in a large pool of normal wild sequences. Thus, there is still great need for developing the highly sensitive and highly specific methods in detecting single-base mutations of RNAs in heterogeneous clinical samples. In the present study, a new chimeric DNA probe-aided ligase chain reaction-based electrochemical method (cmDNA-eLCR) was developed for RNA mutation detection through the BSA-based carrier platform and the horseradish peroxidase-hydrogen peroxide-tetramethylbenzidine (HRP-H2O2-TMB) system. The denaturing polyacrylamide gel electrophoresis and a fluorophore-labeled probe was ingeniously designed to demonstrate the advantage of cmDNA in ligation to normal DNA templated by RNA with the catalysis of T4 RNA ligase 2 as well as its higher selectivity than DNA ligase system. Finally, the proposed cmDNA-eLCR, compared with the traditional eLCR, showed excellent performance in discriminating single base-mismatched sequences, where the signal response for mismatched targets at a high concentration could overlap completely with that for the blank control. Besides, this cmDNA-eLCR assay had a wide linear range crossing six orders of magnitude from 1.0 × 10-15 to1.0 × 10-10 M with a limit of detection as low as 0.6 fM. Furthermore, this assay was applied to detect RNA in real sample with a satisfactory result, thereby demonstrating its great potential in diagnosis of RNA-related diseases.


Subject(s)
Biosensing Techniques , DNA Probes/chemistry , Electrochemical Techniques , Ligase Chain Reaction , RNA/genetics , Humans
4.
Talanta ; 216: 120966, 2020 Aug 15.
Article in English | MEDLINE | ID: mdl-32456905

ABSTRACT

Challenged by the detection of trace amounts of mutants and disturbance from endogenous substances in clinical samples, herein, we present a novel electrochemical biosensor based on ligase chain reaction (eLCR) via the thermostable ligase with high mutation recognizing ability. The lengthened double-stranded DNAs exponentially generated via LCR were uniformly distributed on a bovine serum albumin-modified gold electrode, in which the phosphate buffer was tactfully added to remove adsorbed uninterested-probes, and thereafter the amperometry current was collected for the specific binding of streptavidin-poly-HRP and subsequent catalysis in the 3, 3', 5, 5'-tetramethylbenzidine substrate that contained hydrogen peroxide. It found that, under optimized conditions, the proposed biosensor exhibited a high selectivity of mutant targets from the 104-fold excess of co-existent wild targets within a detection limit of 0.5 fM. Impressively, without the involvement of pre-PCR, the homozygous mutants were specifically distinguished from the wild genotype of CYP2C19*2 allele in human whole blood samples. Therefore, the proposed eLCR, due to its advantages in simple primer design, operational ease and ease of miniaturization, has demonstrated its considerable potential for point-of-care testing in the diagnosis of point mutation-related diseases and personalized medicine.


Subject(s)
Biosensing Techniques , Cytochrome P-450 CYP2C19/genetics , Electrochemical Techniques , Ligase Chain Reaction , Cytochrome P-450 CYP2C19/blood , Humans , Point Mutation
5.
Dev Growth Differ ; 55(7): 676-86, 2013 Sep.
Article in English | MEDLINE | ID: mdl-24020834

ABSTRACT

Insulin is a peptide hormone produced by beta cells of the pancreas. The roles of insulin in energy metabolism have been well studied, with most of the attention focused on glucose utilization, but the roles of insulin in cell proliferation and differentiation remain unclear. In this study, we observed for the first time that 10 nmol/L insulin treatment induces cell proliferation and cardiac differentiation of P19CL6 cells, whereas 50 and 100 nmol/L insulin treatment induces P19CL6 cell apoptosis and blocks cardiac differentiation of P19CL6 cells. By using real-time polymerase chain reaction (PCR) and Western blotting analysis, we found that the mRNA levels of cyclin D1 and α myosin heavy chain (α-MHC) are induced upon 10 nmol/L insulin stimulation and inhibited upon 50/100 nmol/L insulin treatment, whereas the mRNA levels of BCL-2-antagonist of cell death (BAD) exists a reverse trend. The similar results were observed in P19CL6 cells expressing GATA-6 or peroxisome proliferator-activated receptor α (PPARα). Our results identified the downstream targets of insulin, cyclin D1, BAD, α-MHC, and GATA-4, elucidate a novel molecular mechanism of insulin in promoting cell proliferation and differentiation.


Subject(s)
Cell Differentiation/drug effects , Cell Proliferation/drug effects , Insulin/pharmacology , Animals , Apoptosis/drug effects , Apoptosis/genetics , Blotting, Western , Cell Differentiation/genetics , Cell Line, Tumor , Cyclin D1/genetics , Cyclin D1/metabolism , Dose-Response Relationship, Drug , Flow Cytometry , GATA4 Transcription Factor/genetics , GATA4 Transcription Factor/metabolism , GATA6 Transcription Factor/genetics , GATA6 Transcription Factor/metabolism , Gene Expression/drug effects , Mice , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myosin Heavy Chains/genetics , Myosin Heavy Chains/metabolism , PPAR alpha/genetics , PPAR alpha/metabolism , Reverse Transcriptase Polymerase Chain Reaction , bcl-Associated Death Protein/genetics , bcl-Associated Death Protein/metabolism
6.
J Cell Biochem ; 114(12): 2708-17, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23794242

ABSTRACT

Insulin is a secreted peptide hormone identified in human pancreas to promote glucose utilization. Insulin has been observed to induce cell proliferation and myogenesis in C2C12 cells. The precise mechanisms underlying the proliferation of C2C12 cells induced by insulin remain unclear. In this study, we observed for the first time that 10 nM insulin treatment promotes C2C12 cell proliferation. Additionally, 50 and 100 nM insulin treatment induces C2C12 cell apoptosis. By utilizing real-time PCR and Western blotting analysis, we found that the mRNA levels of cyclinD1 and BAD are induced upon 10 and 50 nM/100 nM insulin treatment, respectively. The similar results were observed in C2C12 cells expressing GATA-6 or PPARα. Our results identify for the first time the downstream targets of insulin, cyclin D1, and BAD, elucidate a new molecular mechanism of insulin in promoting cell proliferation and apoptosis.


Subject(s)
Cell Proliferation , Cyclin D1/genetics , Insulin/genetics , bcl-Associated Death Protein/genetics , Apoptosis/genetics , Cell Line , Cell Line, Tumor , Flow Cytometry , GATA6 Transcription Factor/genetics , GATA6 Transcription Factor/metabolism , Gene Expression Regulation, Neoplastic , Humans , Neoplasms/genetics , Neoplasms/pathology , PPAR alpha/genetics , PPAR alpha/metabolism , Signal Transduction , bcl-Associated Death Protein/metabolism
7.
RNA Biol ; 10(4): 465-80, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23558708

ABSTRACT

GATA-4 is an important transcription factor involved in several developmental processes of the heart, such as cardiac myocyte proliferation, differentiation and survival. The precise mechanisms underlying the regulation of GATA-4 remain unclear, this is especially true for the mechanisms that mediate the post-transcriptional regulation of GATA-4. Here, we demonstrate that miR-200b, a member of the miR-200 family, is a critical regulator of GATA-4. Overexpression of miR-200b leads to the downregulation of GATA-4 mRNA and a decrease in GATA-4 protein levels. Moreover, miR-200b not only inhibits cell growth and differentiation but also reverses the growth response mediated by GATA-4, whereas depletion of miR-200b leads to a slight reversal of the anti-growth response achieved by knocking down endogenous GATA-4. More importantly, the cell cycle-associated gene cyclin D1, which is a downstream target of GATA-4, is also regulated by miR-200b. Thus, miR-200b targets GATA-4 to downregulate the expression of cyclin D1 and myosin heavy chain (MHC), thereby regulating cell growth and differentiation.


Subject(s)
Cell Cycle/genetics , GATA4 Transcription Factor/genetics , Gene Expression Regulation , MicroRNAs/metabolism , Animals , Apoptosis/genetics , Cell Cycle/physiology , Cell Cycle Checkpoints/genetics , Cell Differentiation/genetics , Cell Differentiation/physiology , Cell Line , Cell Line, Tumor , Cell Proliferation , Cyclin D1/genetics , Cyclin D1/metabolism , GATA4 Transcription Factor/metabolism , Humans , Mice , MicroRNAs/genetics , Muscle Development/genetics , Myocytes, Cardiac/metabolism , Myosin Heavy Chains/genetics , Myosin Heavy Chains/metabolism
8.
Cancer Cell ; 16(2): 126-36, 2009 Aug 04.
Article in English | MEDLINE | ID: mdl-19647223

ABSTRACT

Clinical evidence suggests that benign cartilage lesions can progress to malignant chondrosarcoma, but the molecular events in this progression are unknown. Mice that develop benign cartilage lesions due to overexpression of Gli2 in chondrocytes developed lesions similar to chondrosarcomas when they were also deficient in p53. Gli2 overexpression and p53 deficiency had opposing effects on chondrocyte differentiation, but had additive effects negatively regulating apoptosis. Regulation of Igfbp3 expression and insulin-like growth factor (IGF) signaling by Gli and p53 integrated their effect on apoptosis. Treatment of human chondrosarcomas or fetal mouse limb explants with IGFBP3 or by blocking IGF increased the apoptosis rate, and mice expressing Gli2 developed substantially fewer tumors when they were also deficient for Igf2. IGF signaling-meditated apoptosis regulates the progression to malignant chondrosarcoma.


Subject(s)
Apoptosis/genetics , Bone Neoplasms/pathology , Chondrocytes/pathology , Chondrosarcoma/pathology , Insulin-Like Growth Factor Binding Protein 3/physiology , Kruppel-Like Transcription Factors/physiology , Tumor Suppressor Protein p53/physiology , Animals , Bone Neoplasms/genetics , Bone Neoplasms/metabolism , Cell Differentiation , Cell Proliferation , Chondrosarcoma/genetics , Chondrosarcoma/metabolism , Collagen Type X/metabolism , Down-Regulation , Gene Expression Regulation, Neoplastic , Growth Plate/metabolism , Growth Plate/pathology , Humans , Insulin-Like Growth Factor Binding Protein 3/metabolism , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Mice , Mice, Transgenic , Signal Transduction , Somatomedins/metabolism , Transcription, Genetic , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Zinc Finger Protein Gli2
SELECTION OF CITATIONS
SEARCH DETAIL
...