Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Small ; 20(14): e2307277, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37972264

ABSTRACT

Organic scintillators with efficient X-ray excited luminescence are essential for medical diagnostics and security screening. However, achieving excellent organic scintillation materials is challenging due to low X-ray absorption coefficients and inferior radioluminescence (RL) intensity. Herein, supramolecular interactions are incorporated, particularly halogen bonding, into organic scintillators to enhance their radioluminescence properties. By introducing heavy atoms (X = Cl, Br, I) into 9,10-bis(4-pyridyl)anthracene (BPA), the formation of halogen bonding (BPA-X) enhances their X-ray absorption coefficient and restricts the molecular vibration and rotation, which boosts their RL intensity. The RL intensity of BPA-Cl and BPA-Br fluorochromes increased by over 2 and 6.3 times compared to BPA, respectively. Especially, BPA-Br exhibits an ultrafast decay time of 8.25 ns and low detection limits of 25.95 ± 2.49 nGy s-1. The flexible film constructed with BPA-Br exhibited excellent X-ray imaging capabilities. Furthermore, this approach is also applicable to organic phosphors. The formation of halogen bonding in bromophenyl-methylpyridinium iodide (PYI) led to a fourfold increase in RL intensity compared to bromophenyl-methyl-pyridinium (PY). It suggests that halogen bonding serves as a promising and effective molecular design strategy for the development of high-performance organic scintillator materials, presenting new opportunities for their applications in radiology and security screening.

2.
Acta Biomater ; 153: 614-629, 2022 11.
Article in English | MEDLINE | ID: mdl-36162767

ABSTRACT

Additively manufactured biodegradable zinc (Zn) alloy scaffolds constitute an important branch in orthopedic implants because of their moderate degradation behavior and bone-mimicking mechanical properties. This work investigated the corrosion fatigue response of a zinc-magnesium (Zn-Mg) alloy gyroid scaffold fabricated via laser-powder-bed-fusion additive manufacturing at the first time. The high-cycle compression-compression fatigue testing of the printed Zn-Mg scaffold was conducted in simulated body fluid, showing its favorable fatigue strength, structural reliability, and anti-fatigue capability. The printed Zn-Mg scaffold obtained a 227% higher fatigue strength than that of the printed Zn scaffold but 17% lower strain accumulation at 106 cycles. The accumulative strain of the Zn-Mg scaffold at its fatigue strength was dominant by fatigue ratcheting, since the fatigue damage strain of the scaffold was approximately zero. The corrosion products (ZnO and Zn(OH)2) were conducive to the inhibition of fatigue ratcheting and fatigue damage. Dislocation pile-up and solid solution phases at the grain boundaries of the Zn-Mg scaffold could retard the spreading of the crack tip and impede excessive grain coarsening, improving its fatigue endurance limit. Notably, the printed Zn-Mg scaffold could dissipate the fatigue energy through moderate grain boundary migration, thus reducing its plastic deformation. These findings illuminated the anti-fatigue mechanisms related to microstructural features and corrosive environments and highlighted the promising prospects of additively manufactured Zn-Mg scaffolds in orthopedic applications. STATEMENT OF SIGNIFICANCE: Additive manufacturing (AM) of biodegradable metals shows unprecedented prospects for bone tissue regeneration medicine. The corrosion fatigue property is one of the key determinants in the performance of AM biodegradable scaffolds. In this study, a Zn-Mg gyroid scaffold was additively manufactured with admirable fatigue endurance limit and anti-fatigue capability. We reported that the corrosion fatigue performance was highly relevant to the microstructural features, validating that the grain boundary engineering strategy improved fatigue strength and inhibited crack penetration. Notably, moderate grain boundary migration could dissipate fatigue energy and reduce plastic deformation. Furthermore, corrosion products were conducive to impeding fatigue ratcheting and fatigue damage, indicating the promising potential of AM Zn-Mg scaffolds in treating load-bearing bone defects.


Subject(s)
Magnesium , Zinc , Magnesium/pharmacology , Magnesium/chemistry , Corrosion , Zinc/pharmacology , Zinc/chemistry , Reproducibility of Results , Alloys/pharmacology , Alloys/chemistry , Materials Testing , Plastics , Absorbable Implants , Biocompatible Materials/pharmacology , Biocompatible Materials/chemistry
3.
Polymers (Basel) ; 14(12)2022 Jun 09.
Article in English | MEDLINE | ID: mdl-35745919

ABSTRACT

In this study, for the first time, a forward-rotating roller is proposed for the spreading of CF/PA12 composite powder in the selective laser sintering (SLS) process. The mesoscopic kinetic mechanism of composite particle spreading is investigated by utilizing the "multi-spherical" element within the discrete element method (DEM). The commercial software EDEM and the open-source DEM particle simulation code LIGGGHTS-PUBLIC are used for the simulations in this work. It is found that the forward-rotating roller produces a strong compaction on the powder pile than does the conventional counter-rotating roller, thus increasing the coordination number and mass flow rate of the particle flow, which significantly improves the powder bed quality. In addition, the forward-rotating pattern generates a braking friction force on the particles in the opposite direction to their spread, which affects the particle dynamics and deposition process. Therefore, appropriately increasing the roller rotation speed to make this force comparable to the roller dragging force could result in faster deposition of the composite particles to form a stable powder bed. This mechanism allows the forward-rotating roller to maintain a good powder bed quality, even at a high spreading speed, thus providing greater potential for the industry to improve the spreading efficiency of the SLS process.

4.
Dent Mater ; 38(2): 431-443, 2022 02.
Article in English | MEDLINE | ID: mdl-34980490

ABSTRACT

OBJECTIVE: Guided bone regeneration (GBR) techniques use barrier membranes to augment the alveolar ridge for the site-specific growth of bone defects. However, current approaches using cast metal substructures exhibit poor adaptation to the surgical site and increased risk of infection. This study aimed to fabricate multi-functional coatings with 3D-printed porous titanium-niobium (Ti-Nb) alloy meshes to maintain space, prevent the ingrowth of fibroblasts and inhibit the colonization of bacteria for GBR. METHODS: Ti-Nb alloy meshes were prepared by selective laser melting (SLM) and used as substrates for novel surface coatings. Porous chitosan (CS)/ gelatin (G)/ doxycycline (Dox) coatings were formed on the meshes using electrophoretic deposition (EPD) and freeze-drying. The process of EPD was characterized through Fourier transform infrared spectroscopy (FT-IR), zeta potential, and particle size analysis. The cytotoxicity of the coatings was evaluated through the culture of osteoblasts and immunostaining. The antibacterial activity of the coatings was tested using inhibition zone tests against Staphylococcus aureus (S. aureus) and scanning electron microscope (SEM). The inhibition of fibroblasts infiltration and nutrients transfer properties were analyzed using immunostaining and permeability tests. RESULTS: High yield strength (567.5 ± 3.5 MPa) and low elastic modulus (65.5 ± 0.2 GPa) were achieved in Ti-Nb alloy bulk samples. The data of zeta potential, FT-IR and SEM indicated that porous spongy coatings were chemically bonded following EPD. In vitro analysis of CSGDox1 (containing Dox at 1 mg·mL-1) coating revealed its antibacterial effect and biocompatibility. Moreover, the CSGDox1 coating was proved to be effective for preventing the ingrowth of fibroblasts, whilst allowing the infiltration of nutrients. SIGNIFICANCE: This study verified that the EPD of CSGDox coatings on the 3D-printed Ti-Nb meshes can maintain space, provide antibiotic release whilst maintaining a barrier against soft-tissue growth, which is essential for the success of GBR treatment.


Subject(s)
Dental Implants , Titanium , Alloys/pharmacology , Bone Regeneration , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Niobium/chemistry , Printing, Three-Dimensional , Spectroscopy, Fourier Transform Infrared , Staphylococcus aureus , Titanium/chemistry
5.
IEEE Trans Image Process ; 31: 99-109, 2022.
Article in English | MEDLINE | ID: mdl-34793302

ABSTRACT

Remote sensing scene classification (RSSC) is a hotspot and play very important role in the field of remote sensing image interpretation in recent years. With the recent development of the convolutional neural networks, a significant breakthrough has been made in the classification of remote sensing scenes. Many objects form complex and diverse scenes through spatial combination and association, which makes it difficult to classify remote sensing image scenes. The problem of insufficient differentiation of feature representations extracted by Convolutional Neural Networks (CNNs) still exists, which is mainly due to the characteristics of similarity for inter-class images and diversity for intra-class images. In this paper, we propose a remote sensing image scene classification method via Multi-Branch Local Attention Network (MBLANet), where Convolutional Local Attention Module (CLAM) is embedded into all down-sampling blocks and residual blocks of ResNet backbone. CLAM contains two submodules, Convolutional Channel Attention Module (CCAM) and Local Spatial Attention Module (LSAM). The two submodules are placed in parallel to obtain both channel and spatial attentions, which helps to emphasize the main target in the complex background and improve the ability of feature representation. Extensive experiments on three benchmark datasets show that our method is better than state-of-the-art methods.


Subject(s)
Algorithms , Remote Sensing Technology , Neural Networks, Computer
6.
Eur J Clin Microbiol Infect Dis ; 41(2): 235-243, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34734347

ABSTRACT

Microbiological confirmation is rare in children with active tuberculosis; therefore, a more accurate test is needed to detect pulmonary tuberculosis in children. In this multicenter study, we evaluated the utility of the Xpert MTB/RIF Ultra (Ultra) on sputum, an assay recommended by the World Health Organization to test for childhood tuberculosis in high-burden settings. Children with symptoms suggestive of tuberculosis were enrolled at three hospitals in China and categorized as having active tuberculosis or nontuberculosis. The sensitivity and specificity of Ultra were 42.1% (48/114) and 99.0% (208/210), respectively. Using three MTB culture results as the reference, the sensitivity of Ultra in the subset of 38 children with culture-positive and 76 children with culture-negative was 68.4% (26/38) and 28.9% (22/76), respectively(p < 0.001). A single MTB culture combined with a single Ultra could detect 54 (54/114,47.4%) cases with active TB, while repeated MTB culture combined with a single Ultra detected 60 (60/114, 52.6%) cases with active TB(p = 0.427). Among 155 children (58 with TB and 97 with RTIs) simultaneously tested with the Ultra and Xpert MTB/RIF (Xpert), the sensitivity of the Xpert (24.1%, 14/58) was lower than that of the Ultra (41.4%, 24/58; p = 0.048). Eight children were found to have rifampin-resistant MTB strains. The Xpert MTB/RIF Ultra assay should be implemented to test for pulmonary tuberculosis in children to achieve higher confirmation rates.


Subject(s)
Antibiotics, Antitubercular/pharmacology , Rifampin/pharmacology , Sputum/microbiology , Tuberculosis, Pulmonary/diagnosis , Adolescent , Child , Child, Preschool , China , Diagnostic Tests, Routine , Drug Resistance, Bacterial/drug effects , Humans , Infant , Infant, Newborn , Mycobacterium tuberculosis/drug effects , Retrospective Studies , Sensitivity and Specificity , Tuberculosis/diagnosis
7.
J Mech Behav Biomed Mater ; 109: 103843, 2020 09.
Article in English | MEDLINE | ID: mdl-32543407

ABSTRACT

Schwartz diamond graded porous structures (SDGPSs), constructed by a triply-periodic-minimal-surface diamond unit cell topology, were developed with various unit cell sizes and printed by laser powder bed fusion (LPBF) from a commercially pure titanium powder for bone implant applications. The effect of unit cell size on the printability, strut dimensions, stress and strain distributions, mechanical properties and energy absorption capability of SDGPSs was investigated. The results indicate the good printability of SDGPSs via LPBF with multiple unit cell sizes from 3.5 mm to 5.5 mm through the three-dimensional reconstruction from micro-computed tomography. The unit cell size plays a critical role in both strut diameters and specific surface areas of SDGPSs. An increase in the unit cell size leads to a reduction in the experimental Young's modulus from 673.08 MPa to 518.71 MPa and compressive yield strength from 11.43 MPa to 7.73 MPa. The mechanical properties of LPBF-printed SDGPSs are higher than those predicted by the finite element method, which is attributed to the higher volume fractions of the printed SDGPSs than the designed values. Furthermore, a rise in unit cell size leads to the decrease of energy absorption capability from 6.06 MJ/mm3 to 4.32 MJ/mm3 and exhibits little influence on the absorption efficiency. These findings provide a good understanding and guidance to the optimization on the unit cell size of functionally graded porous structures for desirable properties.


Subject(s)
Lasers , Titanium , Cell Size , Porosity , Powders , X-Ray Microtomography
8.
Mater Sci Eng C Mater Biol Appl ; 111: 110784, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32279779

ABSTRACT

A titanium-niobium (Ti-Nb) alloy with tailored microstructures, enhanced mechanical properties and biocompatibility was in situ fabricated by selective laser melting (SLM) using a blended powder with 25 wt.% Nb content. The effect of laser energy density from 70 J/mm3 to 110 J/mm3 on the phase transformation, microstructure, and mechanical properties of the SLM-printed Ti-25Nb alloy was investigated. The results indicate that the energy density of 110 J/mm3 results in the highest relative density and homogeneous element distributions in the alloy. The α' and ß phases with an orientation relationship of [023]ß//[-12-16]α' were identified through X-ray diffraction and transmission electron microscopy, and their proportions are crucially determined by the laser energy density. With an increase in the energy density, the microstructure of the Ti-25Nb alloy varies from acicular-shaped grains to coarsened lath-shaped grains and to lath-shaped grain + cellular-shaped subgrains, due to the decrease in cooling rate and the rise in temperature gradient. The yield strength and microhardness of the printed Ti-25Nb alloy decrease with the increase in energy density from 70 J/mm3 to 100 J/mm3, and then increase to the highest values of 645 MPa and 264 HV at 110 J/mm3, respectively. This variation of mechanical properties is dependent on both the coarsening of α' phase and the formation of ß (Ti, Nb) solid solution. Besides, the SLM-printed Ti-25Nb alloy exhibits both the excellent in vitro apatite-forming capability and better cell spread and proliferation compared to pure Ti.


Subject(s)
Alloys/chemistry , Biocompatible Materials/chemistry , Lasers , Mechanical Phenomena , Animals , Cell Line , Mice , Surface Properties , X-Ray Diffraction
9.
J Mech Behav Biomed Mater ; 88: 478-487, 2018 12.
Article in English | MEDLINE | ID: mdl-30223211

ABSTRACT

Porous titanium scaffolds with different unit cell type (tetrahedron and octahedron) and pore size (500 µm and 1000 µm) were fabricated by selective laser melting (SLM), and the effects of unit cell type and pore size on their fatigue properties and cell affinity were studied. The fatigue properties were performed by static and dynamic mechanical testing, while the cell affinity was evaluated in vitro with mouse osteoblast cells. It was found that octahedron scaffolds exhibited superior static mechanical properties, longer fatigue lives and higher fatigue strength in comparison to those of tetrahedron ones. As expected, scaffolds with 1000 µm pore resulted in lower compressive properties and shorter fatigue lives compared to those with 500 µm pore. The differences were analyzed based on the unit cell structure, porosity, and manufacturing imperfections. Scanning electron microscopy (SEM) and immunofluorescence showed that cells spread better on octahedron scaffolds than those on tetrahedron ones. Meanwhile, the scaffolds with 1000 µm pore were more suitable for cell attachment and growth within the same unit cell owing to higher porosity. The comparison of different pore geometry on the mechanical and biological property provided further insight into designing an optimal porous scaffold.


Subject(s)
Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Lasers , Stress, Mechanical , Titanium/chemistry , Titanium/pharmacology , 3T3 Cells , Animals , Compressive Strength , Mice , Models, Molecular , Molecular Conformation , Osteoblasts/cytology , Osteoblasts/drug effects , Porosity
10.
Sensors (Basel) ; 18(4)2018 Apr 12.
Article in English | MEDLINE | ID: mdl-29649171

ABSTRACT

Lack of monitoring of the in situ process signatures is one of the challenges that has been restricting the improvement of Powder-Bed-Fusion Additive Manufacturing (PBF AM). Among various process signatures.

11.
J Mech Behav Biomed Mater ; 80: 119-127, 2018 04.
Article in English | MEDLINE | ID: mdl-29414467

ABSTRACT

A significant requirement for a bone implant is to replicate the functional gradient across the bone to mimic the localization change in stiffness. In this work, continuous functionally graded porous scaffolds (FGPSs) based on the Schwartz diamond unit cell with a wide range of graded volume fraction were manufactured by selective laser melting (SLM). The micro-topology, strut dimension characterization and effect of graded volume fraction on the mechanical properties of SLM-processed FGPSs were systematically investigated. The micro-topology observations indicate that diamond FGPSs with a wide range of graded volume fraction from 7.97% to 19.99% were fabricated without any defects, showing a good geometric reproduction of the original designs. The dimensional characterization demonstrates the capability of SLM in manufacturing titanium diamond FGPSs with the strut size of 483-905µm. The elastic modulus and yield strength of the titanium diamond FGPSs can be tailored in the range of 0.28-0.59GPa and 3.79-17.75MPa respectively by adjusting the graded volume fraction, which are comparable to those of the cancellous bone. The mathematical relationship between the graded porosity and compression properties of a FGPS was revealed. Furthermore, two equations based on the Gibson and Ashby model have been established to predict the modulus and yield strength of SLM-processed diamond FGPSs. Compared to homogeneous diamond porous scaffolds, FGPSs provide a wide range of mutative pore size and porosity, which are potential to be tailored to optimize the pore space for bone tissue growth. The findings provide a basis of new methodologies to design and manufacture superior graded scaffolds for bone implant applications.


Subject(s)
Biocompatible Materials/chemistry , Bone Substitutes/chemistry , Tissue Scaffolds/chemistry , Titanium , Elastic Modulus , Lasers , Materials Testing , Porosity , Surface Properties
12.
Biomacromolecules ; 18(11): 3776-3787, 2017 Nov 13.
Article in English | MEDLINE | ID: mdl-28974094

ABSTRACT

In addition to customizing shapes of metal bone substitutes for patients, the 3D printing technique can reduce the modulus of the substitutes through the design and manufacture of interconnected porous structures, achieving the modulus match between substitute and surrounding bone to improve implant longevity. However, the porous bone substitutes take more risks of postoperative infection due to its much larger surface area compared with the traditional casting solid bone substitute. Here, we prepared of gentamicin-loaded silk fibroin coatings on 3D-printed porous cobalt-chromium-molybdenum (CoCrMo) bone substitutes via electrophoretic deposition technique. Through optimization, relatively intact, continuous, homogeneous, and conformal coatings with a thickness of 2.30 ± 0.58 µm were deposited around the struts with few pore blocked. The porous metal structures exhibited no loss in mechanical properties after the anode galvanic corrosion in EPD process. The initial osteoblastic response on coatings was better than that on metal surface, including cell spreading, proliferation and cytotoxicity. Antibacterial efficacy experiments showed that the coatings had an antibacterial effect on both adherent and planktonic bacteria within 1 week. These results suggested that the beneficial properties of anode electrophoretic deposited silk fibroin coatings could be exploited to improve the biological functionality of porous structures made of medical metals.


Subject(s)
Bone Substitutes/chemical synthesis , Coated Materials, Biocompatible/chemical synthesis , Electrophoresis/methods , Gentamicins/chemical synthesis , Prostheses and Implants/microbiology , Bone Substitutes/chemistry , Bone Substitutes/therapeutic use , Chromium/chemistry , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/therapeutic use , Cobalt/chemistry , Fibroins/chemistry , Fibroins/therapeutic use , Gentamicins/chemistry , Gentamicins/therapeutic use , Humans , Molybdenum/chemistry , Osteoblasts/drug effects , Osteoblasts/microbiology , Porosity , Printing, Three-Dimensional , Prostheses and Implants/adverse effects , Silk/chemistry , Silk/therapeutic use , Surface Properties
13.
Mater Sci Eng C Mater Biol Appl ; 75: 1515-1524, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28415445

ABSTRACT

Ti-6Al-4V Gyroid triply periodic minimal surface (TPMS) lattices were manufactured by selective laser melting (SLM). The as-built Ti-6Al-4V lattices exhibit an out-of-equilibrium microstructure with very fine α' martensitic laths. When subjected to the heat treatment of 1050°C for 4h followed by furnace cooling, the lattices show a homogenous and equilibrium lamellar α+ß microstructure with less dislocation and crystallographic defects compared with the as-built α' martensite. The as-built lattices present very rough strut surfaces bonded with plenty of partially melted metal particles. The sand blasting nearly removed all the bonded metal particles, but created many tiny cracks. The HCl etching eliminated these tiny cracks, and subsequent NaOH etching resulted in many small and shallow micro-pits and develops a sodium titanate hydrogel layer on the surfaces of the lattices. When soaked in simulated body fluid (SBF), the Ti-6Al-4V TPMS lattices were covered with a compact and homogeneous biomimetic hydroxyapatite (HA) layer. This work proposes a new method for making Ti-6Al-4V TPMS lattices with a homogenous and equilibrium microstructure and biomimetic HA coating, which show both tough and bioactive characteristics and can be promising materials usable as bone substitutes.


Subject(s)
Bone Substitutes/chemistry , Lasers , Titanium/chemistry , Alloys , Body Fluids/chemistry , Freezing , Humans , Surface Properties
14.
J Mech Behav Biomed Mater ; 71: 85-94, 2017 07.
Article in English | MEDLINE | ID: mdl-28267662

ABSTRACT

Titanium (Ti)-hydroxyapatite (HA) composites have the potential for orthopedic applications due to their favorable mechanical properties, excellent biocompatibility and bioactivity. In this work, the pure Ti and nano-scale HA (Ti-nHA) composites were in-situ prepared by selective laser melting (SLM) for the first time. The phase, microstructure, surface characteristic and mechanical properties of the SLM-processed Ti-nHA composites were studied by X-ray diffraction, transmission electron microscope, atomic force microscope and tensile tests, respectively. Results show that SLM is a suitable method for fabricating the Ti-nHA composites with refined microstructure, low modulus and high strength. A novel microstructure evolution can be illustrated as: Relatively long lath-shaped grains of pure Ti evolved into short acicular-shaped and quasi-continuous circle-shaped grains with the varying contents of nHA. The elastic modulus of the Ti-nHA composites is 3.7% higher than that of pure Ti due to the effect of grain refinement. With the addition of 2% nHA, the ultimate tensile strength significantly reduces to 289MPa but still meets the application requirement of bone implants. The Ti-nHA composites exhibit a remarkable improvement of microhardness from 336.2 to 600.8 HV and nanohardness from 5.6 to 8.3GPa, compared to those of pure Ti. Moreover, the microstructure and property evolution mechanisms of the composites with the addition of HA were discussed and analyzed. It provides some new knowledge to the design and fabrication of biomedical material composites for bone implant applications.


Subject(s)
Biocompatible Materials/analysis , Durapatite/analysis , Lasers , Titanium/analysis , Materials Testing , X-Ray Diffraction
15.
Sci Rep ; 6: 33780, 2016 09 21.
Article in English | MEDLINE | ID: mdl-27650254

ABSTRACT

A novel method based on selective laser sintering (SLS) process is proposed for the first time to prepare complex and high-performance carbon fibres/polyamide12/epoxy (CF/PA12/EP) ternary composites. The procedures are briefly described as follows: prepare polyamide12 (PA12) coated carbon fibre (CF) composite powder; build porous green parts by SLS; infiltrate the green parts with high-performance thermosetting epoxy (EP) resin; and finally cure the resin at high temperature. The obtained composites are a ternary composite system consisting of the matrix of novolac EP resin, the reinforcement of CFs and the transition thin layer of PA12 with a thickness of 595 nm. The SEM images and micro-CT analysis prove that the ternary system is a three-dimensional co-continuous structure and the reinforcement of CFs are well dispersed in the matrix of EP with the volume fraction of 31%. Mechanical tests show that the composites fabricated by this method yield an ultimate tensile strength of 101.03 MPa and a flexural strength of 153.43 MPa, which are higher than those of most of the previously reported SLS materials. Therefore, the process proposed in this paper shows great potential for manufacturing complex, lightweight and high-performance CF reinforced composite components in aerospace, automotive industries and other areas.

16.
J Mater Chem B ; 4(47): 7584-7595, 2016 Dec 21.
Article in English | MEDLINE | ID: mdl-32263815

ABSTRACT

Electrophoretically deposited (EPD) coatings have often been employed recently for the addition of different new chemical compositions to classic chitosan coatings to improve the biocompatibility and therapeutic potential of coated implants. However, little attention has been paid to enhance the cell response to EPD coatings via integrating the effects of chemical components and surface topography. Here, we fabricated EPD chitosan/gelatin (CS/G) coatings with controlled porous surface topography by controlling bubble generation in the EPD process via changing the gelatin content in solution from 0, 0.01, 0.1, and 1 to 10 mg ml-1. The pure chitosan coating surface was characterized by homogeneous large pores of 500 µm. After 0.01 mg ml-1 gelatin was added, 180 µm small pores appeared on the walls of large pores. As the gelatin content increased to 0.1 mg ml-1, a number of small pores increased noticeably. When the gelatin content reached 1 mg ml-1, large pores disappeared, and the coating displayed homogeneous small pores. 10 mg ml-1 gelatin concentration led to coatings consisting of small pores with not integral and continuous structures. The initial osteoblastic responses, including cell adherence progress, spreading area, proliferation rate, and focal adhesion-related gene expression, gradually improved from 0 to 0.01, 0.1, and 1 mg ml-1 gelatin content, but decreased from 1 to 10 mg ml-1. All these results indicated that the initial cell responses to coatings reached a peak when it was 1 mg ml-1 gelatin and they had homogeneous small pores, which might contribute to the synergistic effects of the porous surface structure and components. This work would be beneficial for expanding the potential application of EPD coatings.

17.
Mater Sci Eng C Mater Biol Appl ; 53: 50-9, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26042690

ABSTRACT

Nb, an expensive and refractory element with good wear resistance and biocompatibility, is gaining more attention as a new metallic biomaterial. However, the high price of the raw material, as well as the high manufacturing costs because of Nb's strong oxygen affinity and high melting point have limited the widespread use of Nb and its compounds. To overcome these disadvantages, porous Nb coatings of various thicknesses were fabricated on Ti substrate via selective laser melting (SLM), which is a 3D printing technique that uses computer-controlled high-power laser to melt the metal. The morphology and microstructure of the porous Nb coatings, which had pores ranging from 15 to 50 µm in size, were characterized with scanning electron microscopy (SEM). The average hardness of the coating, which was measured with the linear intercept method, was 392±37 HV. In vitro tests of the porous Nb coating which was monitored with SEM, immunofluorescence, and CCK-8 counts of cells, exhibited excellent cell morphology, attachment, and growth. The simulated body fluid test also proved the bioactivity of the Nb coating. Therefore, these new porous Nb coatings could potentially be used for enhanced early biological fixation to bone tissue. In addition, this study has shown that SLM technique could be used to fabricate coatings with individually tailored shapes and/or porosities from group IVB and VB biomedical metals and their alloys on stainless steel, Co-Cr, and other traditional biomedical materials without wasting raw materials.


Subject(s)
Coated Materials, Biocompatible/chemistry , Niobium/chemistry , Titanium/chemistry , Animals , Cell Adhesion/drug effects , Cell Line , Cell Proliferation/drug effects , Coated Materials, Biocompatible/toxicity , Cytoskeleton/drug effects , Lasers , Materials Testing , Mice , Niobium/toxicity , Titanium/toxicity
18.
Sci Rep ; 5: 7710, 2015 Jan 12.
Article in English | MEDLINE | ID: mdl-25578467

ABSTRACT

In this paper, we report our experimental study on directly coupling a micro/nano fiber (MNOF) ring with a side-polished fiber(SPF). As a result of the study, the behavior of an add-drop filter was observed. The demonstrated add-drop filter explored the wavelength dependence of light coupling between a MNOF ring and a SPF. The characteristics of the filter and its performance dependence on the MNOF ring diameter were investigated experimentally. The investigation resulted in an empirically obtained ring diameter that showed relatively good filter performance. Since light coupling between a (MNOF) and a conventional single mode fiber has remained a challenge in the photonic integration community, the present study may provide an alternative way to couple light between a MNOF device and a conventional single mode fiber based device or system. The hybridization approach that uses a SPF as a platform to integrate a MNOF device may enable the realization of other all-fiber optical hybrid devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...