Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 26(27): 28328-28340, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31372950

ABSTRACT

Chiral mesoporous silica (SiO2) with helical structure was synthesized by using anionic surfactants as template. Pre-prepared graphene oxide (GO) was then loaded onto SiO2 to synthesize composite carrier chial-meso-SiO2@GO for the immobilization of laccase. The enzyme activity, thermostability, acid stability, and repeatability of the immobilized enzyme were significantly improved after immobilization. The chial-meso-SiO2@GO-immobilized laccase was then used for the degradation of MXC in aqueous phase. The degradation conditions, including temperature, time, pH, MXC concentration, and the dose of immobilized enzyme for cellulosic hydrolysis, were optimized. The optimum conditions for degradation of methoxychlor were selected as pH 4.5, MXC concentration 30 mg/L, immobilized enzyme dose 0.1 g, the maximum MXC removal of over 85% and the maximum degradation rate of 50.75% were achieved after degradation time of six h at temperature of 45 °C. In addition, the immobilized cellulase was added into the immobilized laccase system to form chial-meso-SiO2@GO-immobilized compound enzyme with the maximum MXC degradation rate of 59.58%, higher than that of 50.75% by immobilized laccase. An assessment was made for the effect of chial-meso-SiO2@GO-immobilized compound enzyme on the degradation of MXC in soil phase. For three contaminated soils with MXC concentration of 25 mg/kg, 50 mg/kg, and 100 mg/kg, the MXC removals were 93.0%, 85.8%, and 65.1%, respectively. According to the GC-MS analyses, it was inferred that chial-meso-SiO2@GO-immobilized compound enzyme had a different degradation route with that of chial-meso-SiO2@GO-immobilized laccase. The hydrolysis by immobilized cellulase might attack at a weak location of the MXC molecule with its free radical OH and ultimately removed three chlorine atoms from MXC molecule, leading to generating small molecular amount of degradation product.


Subject(s)
Enzymes, Immobilized/metabolism , Graphite/chemistry , Laccase/metabolism , Methoxychlor/chemistry , Silicon Dioxide/chemistry , Catalysis , Environmental Pollution , Soil , Temperature , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...