Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Talanta ; 274: 125997, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38569369

ABSTRACT

Cyanidin-3-O-glucoside (C3G), a natural antioxidant, plays multiple physiological or pathological roles in maintaining human health; thereby, designing advanced sensors to achieve specific recognition and high-sensitivity detection of C3G is significant. Herein, an imprinted-type electrochemiluminescence (ECL) sensing platform was developed using core-shell Ru@SiO2-CMIPs, which were prepared by covalent organic framework (COF)-based molecularly imprinted polymers (CMIPs) embedded in luminescent Ru@SiO2 cores. The C3G-imprinted COF shell not only helps generate a steady-enhanced ECL signal, but also enables specific recognition of C3G. When C3G is bound to Ru@SiO2-CMIPs with abundant imprinted cavities, resonance energy transfer (RET) behavior is triggered, resulting in a quenched ECL response. The constructed Ru@SiO2-CMIPs nanoprobes exhibit ultra-high sensitivity, absolute specificity, and an ultra-low detection limit (0.15 pg mL-1) for analyzing C3G in food matrices. This study provides a means to construct an efficient and reliable molecular imprinting-based ECL sensor for food analysis.


Subject(s)
Anthocyanins , Electrochemical Techniques , Glucosides , Luminescent Measurements , Metal-Organic Frameworks , Molecular Imprinting , Ruthenium , Silicon Dioxide , Anthocyanins/chemistry , Anthocyanins/analysis , Silicon Dioxide/chemistry , Luminescent Measurements/methods , Electrochemical Techniques/methods , Ruthenium/chemistry , Glucosides/chemistry , Glucosides/analysis , Metal-Organic Frameworks/chemistry , Limit of Detection , Molecularly Imprinted Polymers/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...