Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharmacol Exp Ther ; 343(3): 617-27, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22935731

ABSTRACT

ABT-348 [1-(4-(4-amino-7-(1-(2-hydroxyethyl)-1H-pyrazol-4-yl)thieno[3,2-c]pyridin-3-yl)phenyl)-3-(3-fluorophenyl)urea] is a novel ATP-competitive multitargeted kinase inhibitor with nanomolar potency (IC(50)) for inhibiting binding and cellular autophosphorylation of Aurora B (7 and 13 nM), C (1 and 13 nM), and A (120 and 189 nM). Cellular activity against Aurora B is reflected by inhibition of phosphorylation of histone H3, induction of polyploidy, and inhibition of proliferation of a variety of leukemia, lymphoma, and solid tumor cell lines (IC(50) = 0.3-21 nM). In vivo inhibition of Aurora B was confirmed in an engrafted leukemia model by observing a decrease in phosphorylation of histone H3 that persisted in a dose-dependent manner for 8 h and correlated with plasma concentration of ABT-348. Evaluation of ABT-348 across a panel of 128 kinases revealed additional potent binding activity (K(i) < 30 nM) against vascular endothelial growth factor receptor (VEGFR)/platelet-derived growth factor receptor (PDGFR) families and the Src family of cytoplasmic tyrosine kinases. VEGFR/PDGFR binding activity correlated with inhibition of autophosphorylation in cells and inhibition of vascular endothelial growth factor (VEGF)-stimulated endothelial cell proliferation (IC(50) ≤ 0.3 nM). Evidence of on-target activity in vivo was provided by the potency for blocking VEGF-mediated vascular permeability and inducing plasma placental growth factor. Activity against the Src kinase family was evident in antiproliferative activity against BCR-ABL chronic myeloid leukemia cells and cells expressing the gleevec-resistant BCR-ABL T315I mutation. On the basis of its unique spectrum of activity, ABT-348 was evaluated and found effective in representative solid tumor [HT1080 and pancreatic carcinoma (MiaPaCa), tumor stasis] and hematological malignancy (RS4;11, regression) xenografts. These results provide the rationale for clinical assessment of ABT-348 as a therapeutic agent in the treatment of cancer.


Subject(s)
Aminopyridines/pharmacology , Antineoplastic Agents/pharmacology , Phenylurea Compounds/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Receptors, Platelet-Derived Growth Factor/antagonists & inhibitors , Receptors, Vascular Endothelial Growth Factor/antagonists & inhibitors , src-Family Kinases/antagonists & inhibitors , Aminopyridines/chemistry , Aminopyridines/pharmacokinetics , Aminopyridines/therapeutic use , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/therapeutic use , Aurora Kinase B , Aurora Kinases , Cell Line, Tumor , Dose-Response Relationship, Drug , Female , Histones/antagonists & inhibitors , Human Umbilical Vein Endothelial Cells , Humans , Leukemia, Experimental/drug therapy , Leukemia, Experimental/enzymology , Male , Mice , Mice, Inbred BALB C , Mice, SCID , Molecular Structure , NIH 3T3 Cells , Phenylurea Compounds/chemistry , Phenylurea Compounds/pharmacokinetics , Phenylurea Compounds/therapeutic use , Time Factors , Xenograft Model Antitumor Assays
3.
Blood ; 109(8): 3400-8, 2007 Apr 15.
Article in English | MEDLINE | ID: mdl-17209055

ABSTRACT

In 15% to 30% of patients with acute myeloid leukemia (AML), aberrant proliferation is a consequence of a juxtamembrane mutation in the FLT3 gene (FMS-like tyrosine kinase 3-internal tandem duplication [FLT3-ITD]), causing constitutive kinase activity. ABT-869 (a multitargeted receptor tyrosine kinase inhibitor) inhibited the phosphorylation of FLT3, STAT5, and ERK, as well as Pim-1 expression in MV-4-11 and MOLM-13 cells (IC(50) approximately 1-10 nM) harboring the FLT3-ITD. ABT-869 inhibited the proliferation of these cells (IC(50) = 4 and 6 nM, respectively) through the induction of apoptosis (increased sub-G(0)/G(1) phase, caspase activation, and PARP cleavage), whereas cells harboring wild-type (wt)-FLT3 were less sensitive. In normal human blood spiked with AML cells, ABT-869 inhibited phosphorylation of FLT3 (IC(50) approximately 100 nM), STAT5, and ERK, and decreased Pim-1 expression. In methylcellulose-based colony-forming assays, ABT-869 had no significant effect up to 1000 nM on normal hematopoietic progenitor cells, whereas in AML patient samples harboring both FLT3-ITD and wt-FLT3, ABT-869 inhibited colony formation (IC(50) = 100 and 1000 nM, respectively). ABT-869 dose-dependently inhibited MV-4-11 and MOLM-13 flank tumor growth, prevented tumor formation, regressed established MV-4-11 xenografts, and increased survival by 20 weeks in an MV-4-11 engraftment model. In tumors, ABT-869 inhibited FLT3 phosphorylation, induced apoptosis (transferase-mediated dUTP nick-end labeling [TUNEL]) and decreased proliferation (Ki67). ABT-869 is under clinical development for AML.


Subject(s)
Indazoles/pharmacology , Leukemia, Myeloid, Acute/drug therapy , Phenylurea Compounds/pharmacology , Protein Kinase Inhibitors/pharmacology , Protein Processing, Post-Translational/drug effects , fms-Like Tyrosine Kinase 3/metabolism , Animals , Apoptosis/drug effects , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Extracellular Signal-Regulated MAP Kinases/metabolism , G1 Phase/drug effects , Hematopoietic Stem Cells/metabolism , Humans , K562 Cells , Ki-67 Antigen/biosynthesis , Leukemia, Myeloid, Acute/enzymology , Mice , Phosphorylation/drug effects , Proto-Oncogene Proteins c-pim-1 , Resting Phase, Cell Cycle/drug effects , STAT5 Transcription Factor/metabolism , Tumor Stem Cell Assay , U937 Cells
4.
Mol Cancer Ther ; 5(4): 995-1006, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16648571

ABSTRACT

ABT-869 is a structurally novel, receptor tyrosine kinase (RTK) inhibitor that is a potent inhibitor of members of the vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) receptor families (e.g., KDR IC50 = 4 nmol/L) but has much less activity (IC50s > 1 micromol/L) against unrelated RTKs, soluble tyrosine kinases, or serine/threonine kinases. The inhibition profile of ABT-869 is evident in cellular assays of RTK phosphorylation (IC50 = 2, 4, and 7 nmol/L for PDGFR-beta, KDR, and CSF-1R, respectively) and VEGF-stimulated proliferation (IC50 = 0.2 nmol/L for human endothelial cells). ABT-869 is not a general antiproliferative agent because, in most cancer cells, >1,000-fold higher concentrations of ABT-869 are required for inhibition of proliferation. However, ABT-869 exhibits potent antiproliferative and apoptotic effects on cancer cells whose proliferation is dependent on mutant kinases, such as FLT3. In vivo ABT-869 is effective orally in the mechanism-based murine models of VEGF-induced uterine edema (ED50 = 0.5 mg/kg) and corneal angiogenesis (>50% inhibition, 15 mg/kg). In tumor growth studies, ABT-869 exhibits efficacy in human fibrosarcoma and breast, colon, and small cell lung carcinoma xenograft models (ED50 = 1.5-5 mg/kg, twice daily) and is also effective (>50% inhibition) in orthotopic breast and glioma models. Reduction in tumor size and tumor regression was observed in epidermoid carcinoma and leukemia xenograft models, respectively. In combination, ABT-869 produced at least additive effects when given with cytotoxic therapies. Based on pharmacokinetic analysis from tumor growth studies, efficacy correlated more strongly with time over a threshold value (cellular KDR IC50 corrected for plasma protein binding = 0.08 microg/mL, >or=7 hours) than with plasma area under the curve or Cmax. These results support clinical assessment of ABT-869 as a therapeutic agent for cancer.


Subject(s)
Enzyme Inhibitors/pharmacology , Indazoles/pharmacology , Phenylurea Compounds/pharmacology , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , 3T3 Cells , Animals , Cell Cycle/drug effects , Cell Division/drug effects , Cornea , Edema , Female , Mice , Neovascularization, Physiologic/drug effects , Phosphorylation , Receptors, Platelet-Derived Growth Factor/antagonists & inhibitors , Receptors, Platelet-Derived Growth Factor/metabolism , Receptors, Vascular Endothelial Growth Factor/antagonists & inhibitors , Receptors, Vascular Endothelial Growth Factor/metabolism , Retinal Vessels/drug effects , Retinal Vessels/physiology , Uterus/drug effects , Uterus/physiopathology
5.
Biochem Biophys Res Commun ; 310(2): 529-36, 2003 Oct 17.
Article in English | MEDLINE | ID: mdl-14521942

ABSTRACT

The role of the individual histone deacetylases (HDACs) in the regulation of cancer cell proliferation was investigated using siRNA-mediated protein knockdown. The siRNA for HDAC3 and HDAC1 demonstrated significant morphological changes in HeLa S3 consistent with those observed with HDAC inhibitors. SiRNA for HDAC 4 or 7 produced no morphological changes in HeLa S3 cells. HDAC1 and 3 siRNA produced a concentration-dependent inhibition of HeLa cell proliferation; whereas, HDAC4 and 7 siRNA showed no effect. HDAC3 siRNA caused histone hyperacetylation and increased the percent of apoptotic cells. These results demonstrate that the Class I HDACs such as HDACs 1 and 3 are important in the regulation of proliferation and survival in cancer cells. These results and the positive preclinical results with non-specific inhibitors of the HDAC enzymes provide further support for the development of Class I selective HDAC inhibitors as cancer therapeutics.


Subject(s)
Carcinoma/enzymology , Histone Deacetylases/physiology , Acetylation , Antineoplastic Agents/pharmacology , Apoptosis , Carcinoma/genetics , Carcinoma/pathology , Cell Division/drug effects , HeLa Cells , Histone Deacetylases/classification , Histone Deacetylases/genetics , Histones/metabolism , Humans , RNA Interference , RNA, Small Interfering/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...