Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 410
Filter
1.
Sci Rep ; 14(1): 12716, 2024 06 03.
Article in English | MEDLINE | ID: mdl-38830933

ABSTRACT

To explore the molecular pathogenesis of pulmonary arterial hypertension (PAH) and identify potential therapeutic targets, we performed transcriptome sequencing of lung tissue from mice with hypoxia-induced pulmonary hypertension. Our Gene Ontology analysis revealed that "extracellular matrix organization" ranked high in the biological process category, and matrix metallopeptidases (MMPs) and other proteases also played important roles in it. Moreover, compared with those in the normoxia group, we confirmed that MMPs expression was upregulated in the hypoxia group, while the hub gene Timp1 was downregulated. Crocin, a natural MMP inhibitor, was found to reduce inflammation, decrease MMPs levels, increase Timp1 expression levels, and attenuate hypoxia-induced pulmonary hypertension in mice. In addition, analysis of the cell distribution of MMPs and Timp1 in the human lung cell atlas using single-cell RNAseq datasets revealed that MMPs and Timp1 are mainly expressed in a population of fibroblasts. Moreover, in vitro experiments revealed that crocin significantly inhibited myofibroblast proliferation, migration, and extracellular matrix deposition. Furthermore, we demonstrated that crocin inhibited TGF-ß1-induced fibroblast activation and regulated the pulmonary arterial fibroblast MMP2/TIMP1 balance by inhibiting the TGF-ß1/Smad3 signaling pathway. In summary, our results indicate that crocin attenuates hypoxia-induced pulmonary hypertension in mice by inhibiting TGF-ß1-induced myofibroblast activation.


Subject(s)
Carotenoids , Hypertension, Pulmonary , Hypoxia , Matrix Metalloproteinase 2 , Tissue Inhibitor of Metalloproteinase-1 , Animals , Tissue Inhibitor of Metalloproteinase-1/metabolism , Tissue Inhibitor of Metalloproteinase-1/genetics , Mice , Hypoxia/metabolism , Hypoxia/complications , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/metabolism , Carotenoids/pharmacology , Humans , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 2/genetics , Male , Signal Transduction/drug effects , Transforming Growth Factor beta1/metabolism , Disease Models, Animal , Cell Proliferation/drug effects , Mice, Inbred C57BL , Smad3 Protein/metabolism , Cell Movement/drug effects , Lung/pathology , Lung/metabolism , Lung/drug effects
2.
Water Res ; 258: 121789, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38772320

ABSTRACT

Recovery of ammonium from wastewater represents a sustainable strategy within the context of global resource depletion, environmental pollution and carbon neutralization. The present study developed an advanced self-reporting electroswitchable colorimetric platform (SECP) to realize smart ammonium recovery based on the electrically stimulated transformation of Prussian blue/Prussian white (PB/PW) redox couple. The key to SECP was the selectivity of ammonium adsorption, sensitivity of desorption to electric signals and visualability of color change during switchable adsorption/desorption transformation. The results demonstrated the electrochemical intercalation-induced selective adsorption of NH4+ (selectivity coefficient of 3-19 versus other cations) and deintercalation-induced desorption on the PB-film electrode. At applied voltage of 1.2 V for 20 min, the negatively charged PB-film electrode achieved the maximum adsorption capacity of 3.2 mmol g-1. Reversing voltage to -0.2 V for 20 min resulted in desorption efficiency as high as 99%, indicating high adsorption/desorption reversibility and cyclic stability. The Fe(III)/Fe(II) redox dynamics were responsible for PB/PW transformation during reversible intercalation/deintercalation of NH4+. Based on the blue/transparence color change of PB/PW, the quantitative relationship was established between amounts of NH4+ adsorbed and extracted RGB values by multiple linear regression (R2 = 0.986, RMSE = 0.095). Then, the SECP was created upon the unique capability of real-time monitoring and feedback of color change of electrode to realize the automatic control of NH4+ adsorption/desorption. During five cycles of tests, the adsorption process consistently peaked at an average value of 3.15±0.04 mmol g-1, while desorption reliably approached the near-zero average of 0.06±0.04 mmol g-1. The average time of duration was 19.6±1.67 min for adsorption and 18.8±1.10 min for desorption, respectively. With electroswitchability, selectivity and self-reporting functionalities, the SECP represents a paradigm shift in smart ammonium recovery from wastewater, making wastewater treatment and resource recovery more efficient, more intelligent and more sustainable.

3.
Chem Soc Rev ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38808658

ABSTRACT

Correction for 'Recent advances in the chemistry of isolable carbene analogues with group 13-15 elements' by Mian He et al., Chem. Soc. Rev., 2024, https://doi.org/10.1039/D3CS00784G.

4.
Vaccine ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38734496

ABSTRACT

BACKGROUND: Universal varicella vaccination has been introduced in many countries, but there are a number of important differences in their vaccination strategies. It is essential to establish a vaccination program that can maximize the benefits of varicella vaccine, but there is a lack of comprehensive research on the effectiveness of varicella vaccine in different vaccination status. METHODS: Using data from population-based surveillance platforms we conducted a 1:2 matched case-control study. The cases were clinically diagnosed varicella with onset from 2017 to 2021, 1-14 years old in Chaoyang District, Beijing. The controls were matched according to date of birth (±1 month), sex and residence. The vaccination data of the subjects were obtained from the Childhood Immunization Information Management System in Beijing. Using conditional logistic regression models with or without interaction terms, we evaluated the effectiveness of varicella vaccine in different vaccination status. RESULTS: A total of 2528 cases and 5056 controls were enrolled. This study found that whether the time since last vaccination was adjusted had a substantial effect on the comparing vaccine effectiveness (VE) between subgroups. After adjustment for the time since last vaccination, 1) the incremental VE of 2-dose was 49.6 % (95 % Confidence Interval [CI], 38.8-58.6) compared with 1-dose (93.9 % vs. 88.0 %); 2) Among children who received one dose, the risk of chickenpox in children vaccinated at 18-23 months was 1.382 (95 %CI, 1.084-1.762) times that in children vaccinated at 12-17 months. 3) the VE with less than one, two, and three year intervals is higher than that with six-year-intervals (P < 0.05), respectively. CONCLUSIONS: When comparing VE between subgroups of different vaccination status, the time since last vaccination should be adjusted. The first dose of varicella vaccine should be given as early as the second year of life, and the second dose can improve vaccine effectiveness.

5.
Gut Microbes ; 16(1): 2347725, 2024.
Article in English | MEDLINE | ID: mdl-38722028

ABSTRACT

The gut commensal bacteria Christensenellaceae species are negatively associated with many metabolic diseases, and have been seen as promising next-generation probiotics. However, the cultured Christensenellaceae strain resources were limited, and their beneficial mechanisms for improving metabolic diseases have yet to be explored. In this study, we developed a method that enabled the enrichment and cultivation of Christensenellaceae strains from fecal samples. Using this method, a collection of Christensenellaceae Gut Microbial Biobank (ChrisGMB) was established, composed of 87 strains and genomes that represent 14 species of 8 genera. Seven species were first described and the cultured Christensenellaceae resources have been significantly expanded at species and strain levels. Christensenella strains exerted different abilities in utilization of various complex polysaccharides and other carbon sources, exhibited host-adaptation capabilities such as acid tolerance and bile tolerance, produced a wide range of volatile probiotic metabolites and secondary bile acids. Cohort analyses demonstrated that Christensenellaceae and Christensenella were prevalent in various cohorts and the abundances were significantly reduced in T2D and OB cohorts. At species level, Christensenellaceae showed different changes among healthy and disease cohorts. C. faecalis, F. tenuis, L. tenuis, and Guo. tenuis significantly reduced in all the metabolic disease cohorts. The relative abundances of C. minuta, C. hongkongensis and C. massiliensis showed no significant change in NAFLD and ACVD. and C. tenuis and C. acetigenes showed no significant change in ACVD, and Q. tenuis and Geh. tenuis showed no significant change in NAFLD, when compared with the HC cohort. So far as we know, this is the largest collection of cultured resource and first exploration of Christensenellaceae prevalences and abundances at species level.


Subject(s)
Feces , Gastrointestinal Microbiome , Humans , Feces/microbiology , Clostridiales/genetics , Clostridiales/metabolism , Clostridiales/isolation & purification , Clostridiales/classification , Probiotics/metabolism , Metabolomics , Genomics , Male , Phylogeny , Female , Genome, Bacterial
6.
Mol Cancer Res ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38718076

ABSTRACT

Lung adenocarcinoma (LUAD) is the most prevalent histological type of lung cancer. Previous studies have reported that specific long non-coding RNAs (lncRNAs) are involved in cancer development and progression. The phenotype and mechanism of ENST00000440028, named MSL3P1, a lncRNA which we referring to a cancer-testis gene with potential roles in tumorigenesis and progression, have not been reported. We found that MSL3P1 is overexpressed in LUAD tumor tissues, which is significantly associated with clinical characteristics, metastasis, and poor clinical prognosis. MSL3P1 promotes the metastasis of LUAD in vitro and in vivo. The enhancer reprogramming in LUAD tumor tissue is the major driver of the aberrantly expression of MSL3P1. Mechanistically, due to the competitive binding to CUL3 mRNA with ZFC3H1 protein (a protein involved in targeting polyadenylated RNA to exosomes and promoting the degradation of target mRNA), MSL3P1 can prevent the ZFC3H1-mediated RNA degradation of CUL3 mRNA and transport it to the cytoplasm. This activates the downstream epithelial-to-mesenchymal transition signaling pathway, and promote tumor invasion and metastasis. Implications: This study indicates that lncRNA MSL3P1 regulates CUL3 mRNA stability and promotes the metastasis and holds potential as a prognostic biomarker and therapeutic target in LUAD.

7.
Mol Cancer ; 23(1): 90, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711083

ABSTRACT

BACKGROUND: Metabolic reprogramming and epigenetic alterations contribute to the aggressiveness of pancreatic ductal adenocarcinoma (PDAC). Lactate-dependent histone modification is a new type of histone mark, which links glycolysis metabolite to the epigenetic process of lactylation. However, the role of histone lactylation in PDAC remains unclear. METHODS: The level of histone lactylation in PDAC was identified by western blot and immunohistochemistry, and its relationship with the overall survival was evaluated using a Kaplan-Meier survival plot. The participation of histone lactylation in the growth and progression of PDAC was confirmed through inhibition of histone lactylation by glycolysis inhibitors or lactate dehydrogenase A (LDHA) knockdown both in vitro and in vivo. The potential writers and erasers of histone lactylation in PDAC were identified by western blot and functional experiments. The potential target genes of H3K18 lactylation (H3K18la) were screened by CUT&Tag and RNA-seq analyses. The candidate target genes TTK protein kinase (TTK) and BUB1 mitotic checkpoint serine/threonine kinase B (BUB1B) were validated through ChIP-qPCR, RT-qPCR and western blot analyses. Next, the effects of these two genes in PDAC were confirmed by knockdown or overexpression. The interaction between TTK and LDHA was identified by Co-IP assay. RESULTS: Histone lactylation, especially H3K18la level was elevated in PDAC, and the high level of H3K18la was associated with poor prognosis. The suppression of glycolytic activity by different kinds of inhibitors or LDHA knockdown contributed to the anti-tumor effects of PDAC in vitro and in vivo. E1A binding protein p300 (P300) and histone deacetylase 2 were the potential writer and eraser of histone lactylation in PDAC cells, respectively. H3K18la was enriched at the promoters and activated the transcription of mitotic checkpoint regulators TTK and BUB1B. Interestingly, TTK and BUB1B could elevate the expression of P300 which in turn increased glycolysis. Moreover, TTK phosphorylated LDHA at tyrosine 239 (Y239) and activated LDHA, and subsequently upregulated lactate and H3K18la levels. CONCLUSIONS: The glycolysis-H3K18la-TTK/BUB1B positive feedback loop exacerbates dysfunction in PDAC. These findings delivered a new exploration and significant inter-relationship between lactate metabolic reprogramming and epigenetic regulation, which might pave the way toward novel lactylation treatment strategies in PDAC therapy.


Subject(s)
Carcinoma, Pancreatic Ductal , Gene Expression Regulation, Neoplastic , Glycolysis , Histones , L-Lactate Dehydrogenase , Pancreatic Neoplasms , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/genetics , Humans , Histones/metabolism , Animals , Cell Line, Tumor , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/genetics , Mice , Feedback, Physiological , Epigenesis, Genetic , Carcinogenesis/metabolism , Carcinogenesis/genetics , Prognosis , Cell Proliferation , Female
8.
Sci China Life Sci ; 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38565741

ABSTRACT

Endocrine therapy that blocks estrogen signaling is the most effective treatment for patients with estrogen receptor positive (ER+) breast cancer. However, the efficacy of agents such as tamoxifen (Tam) is often compromised by the development of resistance. Here we report that cytokines-activated nuclear IKKα confers Tam resistance to ER+ breast cancer by inducing the expression of FAT10, and that the expression of FAT10 and nuclear IKKα in primary ER+ human breast cancer was correlated with lymphotoxin ß (LTB) expression and significantly associated with relapse and metastasis in patients treated with adjuvant mono-Tam. IKKα activation or enforced FAT10 expression promotes Tam-resistance while loss of IKKα or FAT10 augments Tam sensitivity. The induction of FAT10 by IKKα is mediated by the transcription factor Pax5, and coordinated via an IKKα-p53-miR-23a circuit in which activation of IKKα attenuates p53-directed repression of FAT10. Thus, our findings establish IKKα-to-FAT10 pathway as a new therapeutic target for the treatment of Tam-resistant ER+ breast cancer.

9.
Science ; 384(6692): 185-189, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38603510

ABSTRACT

Ultrahigh-power-density multilayer ceramic capacitors (MLCCs) are critical components in electrical and electronic systems. However, the realization of a high energy density combined with a high efficiency is a major challenge for practical applications. We propose a high-entropy design in barium titanate (BaTiO3)-based lead-free MLCCs with polymorphic relaxor phase. This strategy effectively minimizes hysteresis loss by lowering the domain-switching barriers and enhances the breakdown strength by the high atomic disorder with lattice distortion and grain refining. Benefiting from the synergistic effects, we achieved a high energy density of 20.8 joules per cubic centimeter with an ultrahigh efficiency of 97.5% in the MLCCs. This approach should be universally applicable to designing high-performance dielectrics for energy storage and other related functionalities.

10.
Article in English | MEDLINE | ID: mdl-38687183

ABSTRACT

Three Gram-positive, obligately anaerobic bacterial strains, namely CSJ-1T, CSJ-3T, and CSJ-4T, were isolated from faeces of healthy persons. They were characterized through a combination of whole-genome sequencing, phenotypic traits, and metabolomic analysis. The genome sizes of CSJ-1T, CSJ-4T, and CSJ-3T were 3.3, 3.8, and 6.1 Mbp, with DNA G+C contents of 47.2, 48.3, and 48.8 mol%, respectively. Strain CSJ-3T was identified as representing a novel species, Diplocloster hominis (type strain CSJ-3T=CGMCC 1.18033T=JCM 36512T) of the genus Diplocloster. The 16S rRNA gene sequence similarity and whole genome average nucleotide identity (gANI) of CSJ-4T to its closest related species, Diplocloster modestus ASD 4241T, were 98.3 and 91.4 %, respectively. Comparative analysis of 16S rRNA gene sequences showed 91.6 % similarity between CSJ-1T and its closest phylogenetic neighbour, Catenibacillus scindens DSM 106146T, and 93.3 % similarity between CSJ-4T and its closest relative strain, Clostridium fessum SNUG30386T. Based on the polyphasic taxonomic results, we proposed two novel genera and three novel species. Strain CSJ-1T was identified as representing a novel species of novel genus, Anaerolentibacter hominis gen. nov. sp. nov. (type strain CSJ-1T=CGMCC 1.18046T=JCM 36511T) of the family Lachnospiraceae, and strain CSJ-4T was identified as representing a novel species of novel genus Pilosibacter fragilis gen. nov. sp. nov. (type strain CSJ-4T=CGMCC 1.18026T= JCM 36513T) of the family Clostridiaceae.


Subject(s)
Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Feces , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , RNA, Ribosomal, 16S/genetics , Feces/microbiology , DNA, Bacterial/genetics , Humans , Fatty Acids/analysis , Genome, Bacterial , Whole Genome Sequencing
11.
Cardiovasc Diabetol ; 23(1): 117, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38566082

ABSTRACT

BACKGROUND: Identifying reliable prognostic markers is crucial for the effective management of hypertension. The neutrophil-to-lymphocyte ratio (NLR) has emerged as a potential inflammatory marker linked to cardiovascular outcomes. This study aims to investigate the association of NLR with all-cause and cardiovascular mortality among patients with hypertension. METHODS: This study analyzed data from 3067 hypertensive adults in the National Health and Nutritional Examination Surveys (NHANES) from 2009 to 2014. Mortality details were obtained from the National Death Index (NDI). Restricted cubic spline (RCS) was deployed to visualize the association of the NLR with mortality risk. Weighted Cox proportional hazards models were employed to assess the independent association of NLR with mortality risk. Time-dependent receiver operating characteristic curve (ROC) analysis was conducted to access the predictive ability of NLR for survival. Mediation analysis was used to explore the indirect impact of NLR on mortality mediated through eGFR. RESULTS: Over a median 92.0-months follow-up, 538 deaths occurred, including 114 cardiovascular deaths. RCS analysis revealed a positive association between NLR and both all-cause and cardiovascular mortality. Participants were stratified into higher (> 3.5) and lower (≤ 3.5) NLR groups. Weighted Cox proportional hazards models demonstrated that individuals with higher NLR had a significantly increased risk of all-cause (HR 1.96, 95% confidence interval (CI) 1.52-2.52, p < 0.0001) and cardiovascular mortality (HR 2.33, 95% CI 1.54-3.51, p < 0.0001). Stratified and interaction analysis confirmed the stability of the core results. Notably, eGFR partially mediated the association between NLR and both all-cause and cardiovascular mortality by a 5.4% and 4.7% proportion, respectively. Additionally, the areas under the curve (AUC) of the 3-, 5- and 10- year survival was 0.68, 0.65 and 0.64 for all-cause mortality and 0.68, 0.70 and 0.69 for cardiovascular mortality, respectively. CONCLUSION: Elevated NLR independently confers an increased risk for both all-cause and cardiovascular mortality in individuals with hypertension.


Subject(s)
Cardiovascular System , Hypertension , Adult , Humans , Neutrophils , Nutrition Surveys , Lymphocytes , Hypertension/diagnosis , Prognosis , Retrospective Studies
12.
Nano Lett ; 24(19): 5886-5893, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38687301

ABSTRACT

The emergence of the metasurface has provided a versatile platform for the manipulation of light at the nanoscale. Recent research in metasurfaces has explored a plethora of dynamic control and switching of multifunctionalities, paving the way for innovative applications in fields such as imaging, sensing, and communication. However, current dynamic multifunctional metasurfaces face challenges in terms of functional scalability and selective activation. In this work, we introduce and experimentally demonstrate a strategy that utilizes multiple plane waves to create arbitrary periodic patterns on the metasurface, thus enabling the dynamic and arbitrary spatial-selective activation of its embedded multiplexed functionalities. Furthermore, our strategy facilitates dynamic light control through mechanical translation, as demonstrated by a high-speed, dynamically switchable beam deflection scenario. Our method effectively overcomes the limitations associated with traditional spatially multiplexing techniques, offering greater flexibility and selectivity for dynamic control in multifunctional metasurfaces.

13.
Biochem Pharmacol ; 224: 116205, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38615918

ABSTRACT

Nitazoxanide is an FDA-approved antiprotozoal drug. Our previous studies find that nitazoxanide and its metabolite tizoxanide affect AMPK, STAT3, and Smad2/3 signals which are involved in the pathogenesis of liver fibrosis, therefore, in the present study, we examined the effect of nitazoxanide on experimental liver fibrosis and elucidated the potential mechanisms. The in vivo experiment results showed that oral nitazoxanide (75, 100 mg·kg-1) significantly improved CCl4- and bile duct ligation-induced liver fibrosis in mice. Oral nitazoxanide activated the inhibited AMPK and inhibited the activated STAT3 in liver tissues from liver fibrosis mice. The in vitro experiment results showed that nitazoxanide and its metabolite tizoxanide activated AMPK and inhibited STAT3 signals in LX-2 cells (human hepatic stellate cells). Nitazoxanide and tizoxanide inhibited cell proliferation and collagen I expression and secretion of LX-2 cells. Nitazoxanide and tizoxanide inhibited transforming growth factor-ß1 (TGF-ß1)- and IL-6-induced increases of cell proliferation, collagen I expression and secretion, inhibited TGF-ß1- and IL-6-induced STAT3 and Smad2/3 activation in LX-2 cells. In mouse primary hepatic stellate cells, nitazoxanide and tizoxanide also activated AMPK, inhibited STAT3 and Smad2/3 activation, inhibited cell proliferation, collagen I expression and secretion. In conclusion, nitazoxanide inhibits liver fibrosis and the underlying mechanisms involve AMPK activation, and STAT3 and Smad2/3 inhibition.


Subject(s)
Antiprotozoal Agents , Nitro Compounds , Thiazoles , Animals , Mice , Thiazoles/pharmacology , Thiazoles/therapeutic use , Male , Humans , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/therapeutic use , Cell Line , Hepatic Stellate Cells/drug effects , Hepatic Stellate Cells/metabolism , Liver Cirrhosis/drug therapy , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Liver Cirrhosis/chemically induced , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/antagonists & inhibitors , Smad3 Protein/metabolism , Liver Cirrhosis, Experimental/chemically induced , Liver Cirrhosis, Experimental/pathology , Liver Cirrhosis, Experimental/drug therapy , Liver Cirrhosis, Experimental/metabolism , Liver Cirrhosis, Experimental/prevention & control , Mice, Inbred C57BL , Smad2 Protein/metabolism
14.
Diabetes Ther ; 15(5): 1231-1244, 2024 May.
Article in English | MEDLINE | ID: mdl-38494571

ABSTRACT

INTRODUCTION: Prediabetes is a state of subclinical glycemic impairment, bridging normal glucose tolerance and diabetes. Globally, over 30% of individuals exhibit prediabetic conditions, with a significant proportion progressing to diabetes. Prediabetes augments risks of various diseases including cardiovascular and kidney disease. While interventions like lifestyle changes have shown promise in diabetes prevention, their long-term sustainability is challenging. Alternative pharmacological treatments, such as acarbose and metformin, have demonstrated efficacy in certain populations. Sodium-glucose co-transporter 2 inhibitors, a novel class of glucose-lowering agents, have shown potential benefits for heart and kidney health in patients with diabetes. This research aims to evaluate the effectiveness and safety of dapagliflozin in individuals with prediabetes, elucidating its potential role in diabetes prevention strategies. RESEARCH DESIGN AND METHODS: This prospective trial is being conducted at Peking University Third Hospital. A total of 240 participants with prediabetes will be enrolled and randomly divided into two groups: one receiving dapagliflozin (10 mg/day) with lifestyle education, and the other with lifestyle education alone over a 12-week duration (with male/female = 1:1 in each group). Anthropometric, clinical and laboratory tests, including body mass index, waist circumference, fasting blood glucose, oral glucose tolerance test, insulin, lipid profile, liver and kidney function, sperm quality, will be conducted at the onset and conclusion of the trial. For adherence monitoring, participants will receive phone follow-ups at week 4 and week 8. The primary outcome is the change in 2-h plasma glucose during an oral glucose tolerance test over the study duration. Secondary outcomes encompass changes in various health metrics, including body mass index, lipid profiles, and liver function. PLANNED OUTCOMES: The proposed study is set to refine diabetes prevention strategies on the basis of its potential benefits observed in patients with diabetes. CONCLUSIONS: This will be the first randomized controlled trial to evaluate the safety and effectiveness of sodium-glucose co-transporter 2 inhibitors compared with lifestyle education for individuals with prediabetes. TRIAL REGISTRATION: ClinicalTrials.gov identifier NCT05914857 (registered 24 July 2023).

15.
Diabetes ; 73(6): 926-940, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38471012

ABSTRACT

Sodium-glucose cotransporter 2 inhibitors, efficacious antidiabetic agents that have cardiovascular and renal benefits, can promote pancreatic ß-cell regeneration in type 2 diabetic mice. However, the underlying mechanism remains unclear. In this study, we aimed to use multiomics to identify the mediators involved in ß-cell regeneration induced by dapagliflozin. We showed that dapagliflozin lowered blood glucose level, upregulated plasma insulin level, and increased islet area in db/db mice. Dapagliflozin reshaped gut microbiota and modulated microbiotic and plasmatic metabolites related to tryptophan metabolism, especially l-tryptophan, in the diabetic mice. Notably, l-tryptophan upregulated the mRNA level of glucagon-like peptide 1 (GLP-1) production-related gene (Gcg and Pcsk1) expression and promoted GLP-1 secretion in cultured mouse intestinal L cells, and it increased the supernatant insulin level in primary human islets, which was eliminated by GPR142 antagonist. Transplant of fecal microbiota from dapagliflozin-treated mice, supplementation of l-tryptophan, or treatment with dapagliflozin upregulated l-tryptophan, GLP-1, and insulin or C-peptide levels and promoted ß-cell regeneration in db/db mice. Addition of exendin 9-39, a GLP-1 receptor (GLP-1R) antagonist, or pancreatic Glp1r knockout diminished these beneficial effects. In summary, treatment with dapagliflozin in type 2 diabetic mice promotes ß-cell regeneration by upregulating GLP-1 production, which is mediated via gut microbiota and tryptophan metabolism.


Subject(s)
Benzhydryl Compounds , Gastrointestinal Microbiome , Glucagon-Like Peptide 1 , Glucosides , Insulin-Secreting Cells , Regeneration , Tryptophan , Animals , Benzhydryl Compounds/pharmacology , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/drug effects , Glucagon-Like Peptide 1/metabolism , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/physiology , Tryptophan/metabolism , Mice , Glucosides/pharmacology , Glucosides/therapeutic use , Regeneration/drug effects , Humans , Male , Insulin/metabolism , Blood Glucose/metabolism , Blood Glucose/drug effects , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/microbiology , Mice, Inbred C57BL , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Diabetes Mellitus, Experimental/metabolism , Glucagon-Like Peptide-1 Receptor/metabolism
16.
Chem Soc Rev ; 53(8): 3896-3951, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38436383

ABSTRACT

Carbenes (R2C:), compounds with a divalent carbon atom containing only six valence shell electrons, have evolved into a broader class with the replacement of the carbene carbon or the RC moiety with main group elements, leading to the creation of main group carbene analogues. These analogues, mirroring the electronic structure of carbenes (a lone pair of electrons and an empty orbital), demonstrate unique reactivity. Over the last three decades, this area has seen substantial advancements, paralleling the innovations in carbene chemistry. Recent studies have revealed a spectrum of unique carbene analogues, such as monocoordinate aluminylenes, nitrenes, and bismuthinidenes, notable for their extraordinary properties and diverse reactivity, offering promising applications in small molecule activation. This review delves into the isolable main group carbene analogues that are in the forefront from 2010 and beyond, spanning elements from group 13 (B, Al, Ga, In, and Tl), group 14 (Si, Ge, Sn, and Pb) and group 15 (N, P, As, Sb, and Bi). Specifically, this review focuses on the potential amphiphilic species that possess both lone pairs of electrons and vacant orbitals. We detail their comprehensive synthesis and stabilization strategies, outlining the reactivity arising from their distinct structural characteristics.

17.
Adv Sci (Weinh) ; : e2400310, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38489751

ABSTRACT

Solar desalination is a promising strategy to utilize solar energy to purify saline water. However, the accumulation of salt on the solar evaporator surface severely reduces light absorption and evaporation performance. Herein, a simple and eco-friendly method to fabricate a 3D gradient graphene spiral sponge (GGS sponge) is presented that enables high-rate solar evaporation and zero liquid discharge (ZLD) desalination of high-salinity brine. The spiral structure of the GGS sponge enhances energy recovery, while the gradient network structures facilitate radial brine transport and directional salt crystallization, which cooperate to endow the sponge with superior solar evaporation (6.5 kg m-2  h-1 for 20 wt.% brine), efficient salt collection (1.5 kg m-2  h-1 for 20 wt.% brine), ZLD desalination, and long-term durability (continuous 144 h in 20 wt.% brine). Moreover, the GGS sponge shows an ultrahigh freshwater production rate of 3.1 kg m-2  h-1 during the outdoor desalination tests. A continuous desalination-irrigation system based on the GGS sponge for crop growth, which has the potential for self-sustainable agriculture in remote areas is demonstrated. This work introduces a novel evaporator design and also provides insight into the structural principles for designing next-generation solar desalination devices that are salt-tolerant and highly efficient.

18.
J Med Virol ; 96(3): e29544, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38511577

ABSTRACT

The impact of SARS-CoV-2 infection shortly after vaccination on vaccine-induced immunity is unknown, which is also one of the concerns for some vaccinees during the pandemic. Here, based on a cohort of individuals who encountered BA.5 infection within 8 days after receiving the fourth dose of a bivalent mRNA vaccine, preceded by three doses of inactivated vaccines, we show that booster mRNA vaccination provided 48% protection efficacy against symptomatic infections. At Day 7 postvaccination, the level of neutralizing antibodies (Nabs) against WT and BA.5 strains in the uninfected group trended higher than those in the symptomatic infection group. Moreover, there were greater variations in Nabs levels and a significant decrease in virus-specific CD4+ T cell response observed in the symptomatic infection group. However, symptomatic BA.5 infection significantly increased Nab levels against XBB.1.9.1 and BA.5 (symptomatic > asymptomatic > uninfected group) at Day 10 and resulted in a more gradual decrease in Nabs against BA.5 compared to the uninfected group at Day 90. Our data suggest that BA.5 infection might hinder the early generation of Nabs and the recall of the CD4+ T cell response but strengthens the Nab and virus-specific T cell response in the later phase. Our data confirmed that infection can enhance host immunity regardless of the short interval between vaccination and infection and alleviate concerns about infections shortly after vaccination, which provides valuable guidance for developing future vaccine administration strategies.


Subject(s)
Antibodies, Neutralizing , Vaccination , Humans , Immunization, Secondary , RNA, Messenger/genetics , Vaccines, Combined , Antibodies, Viral
19.
Strahlenther Onkol ; 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38466403

ABSTRACT

PURPOSE: Primary central nervous system lymphoma (PCNSL) is a rare malignancy of the central nervous system with high invasiveness. There is little consensus on the treatment of PCNSL. This study retrospectively studied data from PCNSL patients in a single center to summarize treatment experience and explore prognostic factors. METHODS: Survival curves were drawn using the Kaplan-Meier method and prognostic factors were analyzed using Cox's hazards model. RESULTS: In multivariate analysis, cerebrospinal fluid lactic acid dehydrogenase (CSF LDH; p = 0.005 and p = 0.002), neutrophil to lymphocyte ratio (NLR; p = 0.014 and p = 0.038), and completion of four cycles of induction therapy (p < 0.001and p < 0.001) were significant and independent predictors of overall survival (OS) and progression-free survival (PFS), respectively. CONCLUSION: On the basis of this study, we propose that PCNSL patients should receive early induction therapy with sufficient cycles. Subsequent consolidation therapy can prevent relapses and improve survival. In patients with PCNSL, the independent prognostic factors for OS and PFS were CSF LDH level, NLR, and full cycles of induction therapy.

20.
EClinicalMedicine ; 69: 102500, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38389713

ABSTRACT

Background: In the post-pandemic era, growing apprehension exists regarding the potential sequelae of COVID-19. However, the risks of respiratory diseases following SARS-CoV-2 infection have not been comprehensively understood. This study aimed to investigate whether COVID-19 increases the long-term risk of respiratory illness in patients with COVID-19. Methods: In this longitudinal, population-based cohort study, we built three distinct cohorts age 37-73 years using the UK Biobank database; a COVID-19 group diagnosed in medical records between January 30th, 2020 and October 30th, 2022, and two control groups, a contemporary control group and a historical control group, with cutoff dates of October 30th, 2022 and October 30th, 2019, respectively. The follow-up period of all three groups was 2.7 years (the median (IQR) follow-up time was 0.8 years). Respiratory outcomes diagnosed in medical records included common chronic pulmonary diseases (asthma, bronchiectasis, chronic obstructive pulmonary disease (COPD), interstitial lung disease (ILD), pulmonary vascular disease (PVD), and lung cancer. For the data analysis, we calculated hazard ratios (HRs) along with their 95% CIs using Cox regression models, following the application of inverse probability weights (IPTW). Findings: A total of 3 cohorts were included in this study; 112,311 individuals in the COVID-19 group with a mean age (±SDs) of 56.2 (8.1) years, 359,671 in the contemporary control group, and 370,979 in the historical control group. Compared with the contemporary control group, those infected with SARS-CoV-2 exhibited elevated risks for developing respiratory diseases. This includes asthma, with a HR of 1.49 and a 95% CI 1.28-1.74; bronchiectasis (1.30; 1.06-1.61); COPD (1.59; 1.41-1.81); ILD (1.81; 1.38-2.21); PVD (1.59; 1.39-1.82); and lung cancer (1.39; 1.13-1.71). With the severity of the acute phase of COVID-19, the risk of pre-described respiratory outcomes increases progressively. Besides, during the 24-months follow-up, we observed an increasing trend in the risks of asthma and bronchiectasis over time. Additionally, the HR of lung cancer for 0-6 month follow-up was 3.07 (CI 1.73-5.44), and the association of lung cancer with COVID-19 disease disappeared at 6-12 month follow-up (1.06; 0.43-2.64) and at 12-24 months (1.02; 0.45-2.34). Compared to those with one SARS-CoV-2 infection, reinfected patients were at a higher risk of asthma (3.0; 1.32-6.84), COPD (3.07; 1.42-6.65), ILD (3.61; 1.11-11.8), and lung cancer (3.20; 1.59-6.45). Similar findings were noted when comparing with a historical cohort serving as a control group, including asthma (1.31; 1.13-1.52); bronchiectasis (1.53; 1.23-1.89); COPD (1.41; 1.24-1.59); ILD (2.53; 2.05-3.13); PVD (2.30; 1.98-2.66); and lung cancer (2.23; 1.78-2.79). Interpretation: Our research suggests that patients with COVID-19 may have an increased risk of developing respiratory diseases, and the risk increases with the severity of infection and reinfection. Even during the 24-month follow-up, the risk of asthma and bronchiectasis continued to increase. Hence, implementing appropriate follow-up strategies for these individuals is crucial to monitor and manage potential long-term respiratory health issues. Additionally, the increased risk in lung cancer in the COVID-19 individuals was probably due to the diagnostic tests conducted and incidental diagnoses. Funding: The National Natural Science Foundation of China of China Regional Innovation and Development Joint Foundation; National Natural Science Foundation of China; Program for High-level Foreign Expert Introduction of China; Natural Science Foundation for Distinguished Young Scholars of Guangdong Province; Guangdong Basic and Applied Basic Research Foundation; Climbing Program of Introduced Talents and High-level Hospital Construction Project of Guangdong Provincial People's Hospital; VA Clinical Merit and ASGE clinical research funds.

SELECTION OF CITATIONS
SEARCH DETAIL
...